
 Advanced search

Linux Journal Issue #49/May 1998

Features

The Perl Debugger by Jeremy Impson
The Perl debugger, a part of the core Perl distribution, is a useful
tool to master, allowing close interactive examination of
executing Perl code.

Building Reusable Java Widgets by R.J. Celestino
An introduction to writing pluggable do-it-yourself widgets for
the Java programmer.

Building a Distributed Spreadsheet in Modula-3 by John Kominek
Mr. Kominek introduces us to the Modula-3 language and shows
us how it can be used for cross-platform programming.

Doubly Linked Lists and the Abstract Data Type by Carl Nobile
The ADT concept is at the heart of object-oriented programming
and cross-platform development. Mr. Nobile gives us an example
with his doubly linked list libraries.

The Importance of the GUI in Cross Platform Development by
Michael Babcock

The fragmentation of development energy into too many GUI
toolkits is one of the most serious problems facing the Linux
community today.

News & Articles

Rapid Prototyping with Tcl/Tk by Richard Schwaninger

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/049/2484.html
https://secure2.linuxjournal.com/ljarchive/LJ/049/2627.html
https://secure2.linuxjournal.com/ljarchive/LJ/049/2690.html
https://secure2.linuxjournal.com/ljarchive/LJ/049/2693.html
https://secure2.linuxjournal.com/ljarchive/LJ/049/2723.html
https://secure2.linuxjournal.com/ljarchive/LJ/049/2172.html

A discussion of rapid prototyping and how it can benefit
programmers in creating software to match the customer's
needs.

CDE Plug-and-Play by George Kraft IV
The programming infrastructure, such as ToolTalk, is a major
strength of the Common Desktop Environment. This article
illustrates client and server plug-and-play through the use of the
Desktop's Application Programming Interfaces (APIs).

The Python DB-API by Andrew M. Kuchling
A Python SIG has put together a DB-API standard; Mr. Kuchling
gives us the details.

Toward Greater Portability: A Quixotic View by Graydon L. Ekdahl,
Ph.D.

Reviews

The Yard Relational Database System by Fred Butzen
A Practical Guide to Linux by Todd Sundsted
HTML: The Definitive Guide, Second Edition by Eric S. Raymond

WWWsmith

Protecting Your Site with Access Controls by Reuven M. Lerner

Columns

Letters to the Editor
Stop the Presses Open Source Debate by Phil Hughes
Take Command gprof, bprof and Time Profilers by Andy Vaught

gprof, bprof and Time Profilers Mr. Vaught shows programmers a
few commands to determine which sections of their code need
optimization.

Linux Means Business Linux on Track: Data Acquisition on
German High Speed Trains by Harald Kirsch

Linux on Track: Data Acquisition on German High Speed Trains
Linux was used in two projects as a data acquisition system
running more or less autonomously in the German ICE trains.
This article describes design issues and implementation as well
as the problems and solutions used in those projects.

New Products
System Administration RAID0 Implementation Under Linux by
Jay Munsterman

RAID0 Implementation Under Linux A practical guide to setting
up and using a RAID0 device with the multiple device (md)
driver.

Linux Gazette KDE and GNOME by Larry Ayers
KDE and GNOME A quick look at two projects designed to make
the administration and usage of a Linux system easier for
beginners.

Best of Technical Support

Archive Index

https://secure2.linuxjournal.com/ljarchive/LJ/049/2362.html
https://secure2.linuxjournal.com/ljarchive/LJ/049/2605.html
https://secure2.linuxjournal.com/ljarchive/LJ/049/2893.html
https://secure2.linuxjournal.com/ljarchive/LJ/049/2644.html
https://secure2.linuxjournal.com/ljarchive/LJ/049/2275.html
https://secure2.linuxjournal.com/ljarchive/LJ/049/2525.html
https://secure2.linuxjournal.com/ljarchive/LJ/049/2730.html
https://secure2.linuxjournal.com/ljarchive/LJ/049/2729.html
https://secure2.linuxjournal.com/ljarchive/LJ/049/2727.html
https://secure2.linuxjournal.com/ljarchive/LJ/049/2622.html
https://secure2.linuxjournal.com/ljarchive/LJ/049/2512.html
https://secure2.linuxjournal.com/ljarchive/LJ/049/2512.html
https://secure2.linuxjournal.com/ljarchive/LJ/049/2726.html
https://secure2.linuxjournal.com/ljarchive/LJ/049/2359.html
https://secure2.linuxjournal.com/ljarchive/LJ/049/2725.html
https://secure2.linuxjournal.com/ljarchive/LJ/049/2722.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

The Perl Debugger

Jeremy Impson

Issue #49, May 1998

The Perl debugger, a part of the core Perl distribution, is a useful tool to master,
allowing close interactive examination of executing Perl code.

This article is a tutorial about the Perl5 source debugger and assumes that the
reader has written at least one or more simple Perl programs. It is best read in
front of a computer, following along with a copy of the code, available at Linux
Journal's FTP site (see Resources). The version of Perl that I use is perl5.004_1,
which comes with the Perl debugger level 1. I've noticed some subtle
differences between this and earlier versions of the debugger. If something
discussed here doesn't work for you, consider upgrading.

The Perl programming language is being used increasingly on the World Wide
Web as the back end to Common Gateway Interface (CGI) forms and interactive
web pages, as well as for automated scripts for maintaining web sites and Unix
servers in general. As a result, more and more users are beginning to learn
Perl.

Conceptually, a debugger is a tool which allows the programmer a greater
degree of control over the execution of the program without having to
physically insert code that provides this control. A debugger allows the
programmer to step through the program code, line by line if necessary. It
allows peeks into the contents of the variables of the program, as well as into
the stack, which is basically the list of functions (known as subroutines in Perl
parlance) that have been called in order to get from the the main part of the
program to the current point of execution.

Examples of Debuggers

There are many different debuggers. Some, such as dbx or gdb, are separate
programs that can be used to debug programs written in languages such as C,
C++, Modula-2 or FORTRAN. (gdb, for instance, can handle C, C++ and

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/049/2484s1.html

Modula-2, according to its man page, which on my system dates from 1991, so
by now it may cover FORTRAN.) Programming environments from Borland,
Microsoft and others may have debugging capabilities built into their
windowing environment.

Invoking the Debugger with Unix

Invoking the Perl debugger is as easy as invoking Perl itself. All one needs to do
is provide the -d option when invoking the Perl interpreter, like this:

perl -d perlscript.pl

Invoking the Debugger with Windows

Perl has also been ported to Win32 systems and can be invoked similarly. If
your system supports the #! syntax for scripts, you can have this as the first line
of your Perl script (assuming you keep the Perl interpreter in /usr/bin):

#!/usr/bin/perl -d

This option isn't supported under Win32 systems (that I know of), but there are
ways to simulate it. See the appropriate documentation.

Invoking the Debugger with Emacs

The Perl debugger can also run under Emacs, creating an integrated
programming environment that is similar to products from Borland or others.

How the Debugger Works

Generally, when using a program written in Perl, you are invoking the program
with the Perl interpreter. A Perl compiler is on the horizon, but will not be
directly covered by this article. (The most logical way to debug code intended
for the Perl compiler is to use the standard debugger until the code is “bug
free”, then compile it.)

Under normal conditions, the Perl interpreter will read in the Perl script and will
do a certain amount of compilation, turning your Perl code into some highly-
optimized instructions, which are then interpreted. When using the debugger,
extra Perl code is inserted into your code before it is handed off to the
interpreter. Also, a library file, called in current releases perl5db.pl, is required
in your Perl script. This final script is interpreted, resulting in the program
running in the debugging environment.

The Warning Flag

When programming in Perl, you should probably always use the warning flag.
Use this just as you would use the debug flag, as follows:

perl -w

When you are getting strange results from your program, you should definitely

use the warning flag. The warning flag causes Perl to issue warnings regarding
your code. These warnings are about things which are not fatal, but may cause
problems. You can view the warnings as critiques of your coding style. Common
warnings are those indicating that a certain variable has been used only once
(perhaps a typo), or that a used package can't be found (maybe the package is
not available on your system or is installed incorrectly).

Perl doesn't make you specify function prototypes and allows you to create
variables at any point, so you don't have the advantages of type checking,
although, with Perl 5 you can optionally have type checking for subroutines.

Commands (also see the man page)

This tutorial covers the debugger commands that I've found the most useful.
The perldebug man page has a complete list of commands.

The most important command that can be entered into the debugger is h,
which prints out a help screen. This tends to scroll off the screen, so type h h to
see the help screen better formatted to fit your screen. Or, you can type |h,
which will pipe the output of the command h into a pager, such as more or less.
You can define what pager to use by setting the PAGER environmental variable
to whatever pager you prefer. I prefer using less. (You can actually do this from
within the debugger by typing:

$ENV{'PAGER'} = "/usr/bin/less"

at the debugger prompt.) This piping mechanism works with more than just the
help command, so if you ever do something and the result moves off your
screen, try prepending it with a pipe. You can get help with individual
commands by typing h command.

Simple Example

Now let's look at actual examples of using the debugger. We'll start with the
simple snippet of Perl code in Listing 1, called p1.pl. Notice that we are
executing the code with the -d option to perl, invoking the debugger. Upon
invoking the script under the debugger, we'll see the following:

https://secure2.linuxjournal.com/ljarchive/LJ/049/2484l1.html

Loading DB routines from perl5db.pl version 1
Emacs support available.
Enter h or h h for help.
main::(./p1.pl:3): if(0) {
 DB<1>

The debugger has suspended the normal execution of p1.pl, and is waiting for a
command. Notice that we are given some information concerning where we
are in the text of the program. The string main::(./p1.pl:3): tells us that we are in
the main part of the Perl code, that the program we are executing is ./p1.pl and
that we are at line three of the code. If we were in the middle of another Perl
package, that package name would be listed here. We are also shown that line
three is if(0) {. When we see code on a line, we have not yet executed it; rather
it is this line in the code that is about to be executed. The next line, DB<1>, is a
prompt at which to enter the first command to the debugger. If you enter a
command and wish to repeat it, you can enter ! comnum, where comnum is the
command number you wish to repeat.

Listing Code

We can see more of the surrounding script by typing l and pressing enter. Be
careful not to put white space before this or any other commands. Doing so
tells the debugger that what follows is not a command. Instead, the debugger
will try to execute the code as normal Perl code and will evaluate it in the
current context of the program being debugged. The debugger will do the same
thing for any input it doesn't recognize as a debugger command. Using the
character ; (semicolon) to end the command is optional.

Entering l (letter l for list) causes the following lines to appear on the screen:

3==> if(0) {
4: print "Can't get here!\n";
5 }
6
7: while ($i < 10) {
8: $i++;
9 }
10
11: if($i >= 9) {
12: print "Hello, world!\n";
 DB<1>

Notice the arrow, ==>. This represents the current line of code. In this case, it is
line 3 and is the first actual line of Perl code. Notice also that all the lines which
actually have executable code on them are labeled with a : (colon) after the line
number. This is important, because later on when we get into breakpoints and
action points, we will only be able to set them at these lines.

Entering l again yields this output:

13 }
14

15: exit 0;
 DB<1>

The l without any arguments reveals the next window of Perl code. Subsequent
usage reveals the next window and the next. There is an internal line pointer
that gets incremented one window each time l is used. To back up a window,
type - (hyphen) and press enter, then press l again.

There are also arguments to the l command, dealing with various ways of
specifying what lines are printed based on their line numbers. We will use some
of them as we need them. Similar to l is w, which prints out windows of
program text. See the perldebug man page for details.

Stepping Through Lines of Code

There are two ways to execute the code. We know that the current line is 3 and
is an if statement. The first method, s, is to step through the code, statement by
statement. The other method is n, for next, which similarly steps through the
code; however, in the case where the current statement is a subroutine call (as
opposed to a built-in function or some sort of variable assignment), n will treat
the subroutine as though it were a built-in function and will step over the
subroutine, as if it is an atomic command. In contrast, s will enter the
subroutine and step through every line of the subroutine. It will do the same
for any subroutines encountered within the first one. This can be annoying
when we know that the subroutine is working correctly—hence the n
command. For this simple example, where we have no subroutines, n has the
same effect as s. After entering s or n, we can simply press enter, and the
debugger will reissue the last s or the last n command. This is useful to get
through lines of code quickly. Pressing s displays the following:

main::(./p1.pl:7): while ($i < 10) {

Notice that we've skipped from line 3 to line 7. Enter l 3+4. This shows us four
lines from line 3. We skipped to line 7 because the conditional in line 3, if(0), is
false. So the then part of the conditional is ignored, and the else portion is
executed.

Listing Variables

Notice that there is a variable in the code, $i. We know that the body of the
while loop will be executed until $i is greater than or equal to 10. (Enter l 7+10

to see the body of the while loop.)

So what value does $i have now? Type p $i. The print command is p, and
without an argument; it will print the contents of the magic Perl variable $_. Any
valid Perl expression is a valid argument to p. Because anything that the

debugger doesn't recognize as a debugger command is evaluated as Perl code,
you could also type print instead of p. Don't worry about having redirected
standard output to something other than your screen. The debugger will take
care to ensure that you'll see some output. But, typing p is quicker than typing
print, and as any good programmer knows, laziness is one of the
“programmer's virtues”, the other two being hubris and impatience (Larry Wall,
see Resources).

Typing p $i results in nothing. No, we didn't do anything wrong. $i hasn't been
set to anything, so it gets the default value of nothing. Type s (or just press
enter). Try p $i again. It should print the number 1. Press enter again and type p
$i again. Now, we could continue this, but we know that we will keep spinning
in this while loop until the conditional returns false, which won't happen until $i

is no longer less than 10. And, as I said before, impatience is another
programmer's virtue, so we'll rush things along a bit. Enter $i = 8, then press
enter again. Do it one more time, and we've broken free of the loop.

The last conditional checks that $i is at least equal to 9. Because it now is, the
then portion of the if statement will not get executed. Note that we could have
set $i back to 2 before we execute the final if statement. The result would have
been an execution that under normal conditions (i.e., without using the
debugger) could never have occurred (assuming the computer is working
properly, and no bits in memory get fiddled).

As any good first program should, our first debug program prints Hello, World!

to the screen. Notice that even under the debugger, this happens as it should.
Pressing enter one more time terminates the program.

More Complex Example

The code in Listing 2 is a more complex piece of code with a bug in it. It should
print out every regular file in the current directory and all subdirectories,
recursively. Right now, it only prints the files in the current directory and
doesn't seem to delve into further subdirectories.

Execute this program in a directory with a few subdirectories and place files
and further subdirectories in these subdirectories to create a small but diverse
hierarchy.

The output of this code (once the bug gets fixed) from the directories I ran it in,
looked like this:

./file1

./dir1.0/file1

./dir1.0/file2

./dir1.0/file3

./dir1.0/dir1.1/file1

https://secure2.linuxjournal.com/ljarchive/LJ/049/2484l2.html

./dir1.0/dir1.1/file2

./dir1.0/dir1.1/file3

./dir2.0/file1

./dir2.0/file2

./dir2.0/file3

./dir2.0/dir2.1/file1

./dir2.0/dir2.1/file2

./dir3.0/file1

Subroutines

There is one more variation of the list code command, l. It is the ability to list
the code of a subroutine, by typing l sub, where sub is the subroutine name.

Running the code in Listing 2 returns:

Loading DB routines from perl5db.pl version 1
Emacs support available.
Enter h or h h for help.
main::(./p2.pl:3): require 5.001;
 DB<1>

Entering l searchdir allows us to see the text of searchdir, which is the meat of
this program.

22 sub searchdir { # takes directory as argument
23: my($dir) = @_;
24: my(@files, @subdirs);
25
26: opendir(DIR,$dir) or die "Can't open \"
27: $dir\" for reading: $!\n";
28
29: while(defined($_ = readdir(DIR))) {
30: /^\./ and next; # if file begins with '.', skip
31
32 ### SUBTLE HINT ###

As you can see, I left a subtle hint. The bug is that I deleted an important line at
this point.

Setting Breakpoints

If we were to step through every line of code in a subroutine that is supposed
to be recursive, it would take all day. As I mentioned before, the code as in
Listing 2 seems only to list the files in the current directory, and it ignores the
files in any subdirectories. Since the code only prints the files in the current,
initial directory, maybe the recursive calls aren't working. Invoke the Listing 2
code under the debugger.

Now, set a breakpoint. A breakpoint is a way to tell the debugger that we want
normal execution of the program until it gets to a specific point in the code. To
specify where the debugger should stop, we insert a breakpoint. In the Perl
debugger, there there are two basic ways to insert a breakpoint. The first is by
line number, with the syntax b linenum. If linenum is omitted, the breakpoint is
inserted at the next line about to be executed. However, we can also specify

breakpoints by subroutine, by typing b sub, where sub is the subroutine
name. Both forms of breakpointing take an optional second argument, a Perl
conditional. If when the flow of execution reached the breakpoint the
conditional evaluates to true, the debugger will stop at the breakpoint;
otherwise, it will continue. This gives greater control of execution.

For now we'll set a break at the searchdir subroutine with b searchdir. Once the
breakpoint is set, we'll just execute until we hit the subroutine. To do this, enter
c (for continue).

Adding Actions

Looking at the code in Listing 2, we can see that the first call to searchdir comes
in the main code. This seems to works fine, or else nothing would be printed
out. Press c again to continue to the next invocation of searchdir, which occurs
in the searchdir routine.

We wish to know what is in the $dir variable, which represents the directory
that will be searched for files and subdirectories. Specifically, we want to know
the contents of this variable each time we cycle through the code. We can do
this by setting an action. By looking at the program listing, we see that by line
25, the variable $dir has been assigned. So, set an action at line 25 in this way:

a 25 print "dir is $dir\n"

Now, whenever line 25 comes around, the print command will be executed.
Note that for the a command, the line number is optional and defaults to the
next line to be executed.

Pressing c will execute the code until we come across a breakpoint, executing
action points that are set along the way. In our example, pressing c
continuously will yield the following:

main::(../p2.pl:3): require 5.001;
 DB<1> b searchdir
 DB<2> a 25 print "dir is $dir\n"
 DB<3> c
main::searchdir(../p2.pl:23): my($dir) = @_;
 DB<3> c
dir is .
main::searchdir(../p2.pl:23): my($dir) = @_;
 DB<3> c
dir is dir1.0
main::searchdir(../p2.pl:23): my($dir) = @_;
 DB<3> c
dir is dir2.0
main::searchdir(../p2.pl:23): my($dir) = @_;
 DB<3> c
dir is dir3.0
file1
file1
file1
file1
DB::fake::(/usr/lib/perl5/perl5db.pl:2043):

2043: "Debugged program terminated. Use `q' to quit or `R' to
restart.";
 DB<3>

Note that older versions of the debugger don't output the last line as listed
here, but instead exit the debugger. This newer version is nice because when
the program has finished it still lets you have control so that you can restart the
program.

It still seems that we aren't getting into any subdirectories. Enter D and A to
clear all breakpoints and actions, respectively, and enter R to restart. Or, in
older debugger versions, simply restart the program to begin again.

We now know that the searchdir subroutine isn't being called for any
subdirectories except the first level ones. Looking back at the text of the
program, notice in lines 44 through 46 that the only time the searchdir
subroutine is called recursively is when there is something in the @subdirs list.
Put an action at line 42 that will print the $dir and @subdirs variables by
entering:

a 42 print "in $dir is @subdirs \n"

Now, put a breakpoint at line 12 to prevent the program from outputting to our
screen (b 12), then enter c. This will tell us all the subdirectories that our
program thinks are in the directory.

main::(../p2.pl:3): require 5.001;
 DB<1> a 42 print "in $dir is @subdirs \n"
 DB<2> b 12
 DB<3> c
in . is dir1.0 dir2.0 dir3.0
in dir1.0 is
in dir2.0 is
in dir3.0 is
main::(../p2.pl:12): foreach (@files) {
 DB<3>

This program sees that there are directories in “.”, but not in any of the
subdirectories within “.”. Since we are printing out the value of @subdirs at line
42, we know that @subdirs has no elements in it. (Notice that when listing line
42, there is the letter “a” after the line number and a colon. This tells us that
there is an action point here.) So, nothing is being assigned to @subdirs in line
37, but should be if the current (as held in $_) file is a directory. If it is, it should
be pushed into the @subdirs list. This is not happening.

One error I've committed (intentionally, of course) is on line 38. There is no
catch-all “else” statement. I should probably put an error statement here.
Instead of doing this, let's put in another action point. Reinitialize the program
so that all points are cleared and enter the following:

a 34 if(! -f $_ and ! -d $_) { print "in $dir: $_ is
weird!\n" }
b 12"
c

which reveals:

main::(../p2.pl:3): require 5.001;
 DB<1> a 34 if(! -f $_ and ! -d $_) { print "in $dir:
$_ is weird!\n" }
 DB<2> b 12
 DB<3> c
in dir1.0: dir1.1 is weird!
in dir1.0: dir2.1 is weird!
in dir1.0: file2 is weird!
in dir1.0: file3 is weird!
in dir2.0: dir2.1 is weird!
in dir2.0: dir1.1 is weird!
in dir2.0: file2 is weird!
in dir2.0: file3 is weird!
main::(../p2.pl:12): foreach (@files) {
 DB<3>

While the program can read (through the readdir call on line 29) that dir1.1 is a
file of some type in dir1.0, the file test (the -f construct) on dir1.1 says that it is
not.

It would be nice to halt the execution at a point (line 34) where we have a
problem. We can use the conditional breakpoint that I mentioned earlier to do
this. Reinitialize or restart the debugger, and enter:

b 34 (! -f $_ and ! -d $_)
c
p
p $dir

You'll get output that looks like this:

main::(../p2.pl:3): require 5.001;
 DB<1> b 34 (! -f $_ and ! -d $_)
 DB<2> c
main::searchdir(../p2.pl:34): if(-f $_) { # if its a file...
 DB<2> p
dir1.1
 DB<2> p $dir
dir1.0
 DB<3>

The first line sets the breakpoint, the next c executes the program until the
break point stops it. The p prints the contents of the variable $_ and the last
command, p $dir prints out $dir. So, dir1.1 is a file in dir1.0, but the file tests (-d
and -f) don't admit that it exists, and therefore dir1.1 is not being inserted into
@subdirs (if it's a directory) or into @files (if it's a file).

Now that we are back at a prompt, we could inspect all sorts of variables,
subroutines or any other Perl construct. To save you from banging your heads
against your monitors, and thus saving both your heads and your monitors, I'll
tell you what is wrong.

All programs have something known as the current working directory (CWD). By
default, the CWD is the directory where the program starts. Any and all file
accesses (such as file tests or file and directory openings) are made in reference
from the CWD. At no time does our program change its CWD. But the values
returned by the readdir call on line 29 are simply file names relative to the
directory that readdir is reading (which is in $dir). So, when we do the readdir,
$_ gets assigned a string representing a file (or directory) within the directory in
$dir (which is why it's called a subdirectory). But when running the -f and -d file
tests, they look for $_ in the context of the CWD. But it isn't in the CWD, it's in
the directory represented by $dir. The moral of the story is that we should be
working with $dir/$_, not just $_. So the string

###SUBTLE HINT###

should be replaced by

$_ = "$dir/$_"; # make all path names absolute

That sums it up. Our problem was we were dealing with relative paths, not
absolute (from the CWD) paths.

Putting it back into our example, we need to check dir1.0/dir1.1, not dir1.1. To
check to make sure that this is what we want, we can put in another action
point. Try typing:

a 34 $_ = "$dir/$_"
c

In effect this temporarily places the corrective measure into our code. Action
points are the first item on the line to be evaluated. You should now see the
proper results of the execution of the program:

DB<1> a 34 $_ = "$dir/$_"
DB<2> c
./file1
./dir1.0/file1
./dir1.0/file2
./dir1.0/file3
./dir1.0/dir1.1/file1
./dir1.0/dir1.1/file2
./dir1.0/dir1.1/file3
./dir2.0/file1
./dir2.0/file2
./dir2.0/file3
./dir2.0/dir2.1/file1
./dir2.0/dir2.1/file2
./dir3.0/file1
DB::fake::(/usr/lib/perl5/perl5db.pl:2043):
2043: "Debugged program terminated. Use `q' to quit or `R' to
restart.";
 DB<2>

Stack Traces

Now that we've got the recursive call debugged, let's play with the calling stack
a bit. Giving the command T will display the current calling stack. The calling
stack is a list of the subroutines which have been called between the current
point in execution and the beginning of execution. In other words, if the main
portion of the code executes subroutine “a”, which in turn executes subroutine
“b”, which calls “c”, then pressing “T” while in the middle of subroutine “c”
outputs a list going from “c” all the way back to “main”.

Start up the program and enter the following commands (omit the second one
if you have fixed the bug we discovered in the last section):

b 34 ($_ =~ /file2$/)
a 34 $_ = "$dir/$_"
c

These commands set a breakpoint that will only stop execution if the value of
the variable $_ ends with the string file2. Effectively, this code will halt execution
at arbitrary points in the program. Press T and you'll get this:

@ = main::searchdir('./dir1.0/file2') called from file '../p2.pl' line
45
@ = main::searchdir(.) called from file '../p2.pl' line 10

Enter c, then T again:

@ = main::searchdir('./dir1.0/dir1.1/file2') called from file
`../p2.pl' line 45
@ = main::searchdir(undef) called from file '../p2.pl' line 45
@ = main::searchdir(.) called from file '../p2.pl' line 10

Do it once more:

@ = main::searchdir('./dir2.0/file2') called from file '../p2.pl' line
45
@ = main::searchdir(.) called from file '../p2.pl' line 10

You can go on, if you so desire, but I think we have enough data from the
arbitrary stack dumps we've taken.

We see here which subroutines were called, the debugger's best guess of which
arguments were passed to the subroutine and which line of which file the
subroutine was called from. Since the lines begin with @ = , we know that
searchdir will return a list. If it were going to return a scalar value, we'd see $ =.
For hashes (also known as associative arrays), we would see % =.

I say “best guess of what arguments were passed” because in Perl, the
arguments to subroutines are placed into the @_ magic list. However,
manipulating @_ (or $_) in the body of the subroutine is allowed and even

encouraged. When a T is entered, the stack trace is printed out, and the current
value of @_ is printed as the arguments to the subroutine. So when @_ is
changed, the trace doesn't reflect what was actually passed as arguments to
the subroutine.

Warnings

Well, by now you must be thinking, “Gosh, this Perl debugger is so keen that
with it I can end world hunger, learn to play the piano and increase my
productivity by 300%!” Well, this is the right attitude. You are now displaying the
third programmer's virtue, hubris. However, there are some warnings.

Race Conditions

Race conditions are the scourge of the programmer. Race conditions are bugs
that occur only under certain circumstances. These circumstances usually
involve the time at which certain events correlate with other events. Using the
debugger to debug these situations is not always possible, because the act of
using the debugger may change the timing of the events in the program. This
can cause a symptom to occur without the debugger, but while using the
debugger, the symptom may disappear. The bug isn't gone, it just isn't being
“tickled”.

There really isn't any stock method to get rid of race conditions. Usually, an
intense analysis of the algorithms is necessary. Finite-state diagrams may also
be useful, if you have the patience for it.

Process Management, IPC

When writing code that involves more than one process (for example, if your
code uses a “fork” system call or its equivalent), using the debugger becomes
very difficult. This is because when the fork occurs, you are left with two (or
more) processes, all running under the debugger. But since the debugger is
interactive, you have to interact with every process. The result is that you have
to individually deal with each process, controlling each execution. All the
processes will want to read debug commands from the controlling terminal,
but only one at a time will be able to do so. The other(s) will block, waiting for
the first to complete. When it does, another process will complete. Incidentally,
we can't know for sure which process will be first. This is an example of the
above mentioned race condition.

Perl Code Must Be Compilable

The final concern with using the debugger is compilation. Because the
debugger is actually just debugging code inserted into your script, it is

necessary that your script be compilable. That is, there should be no syntax
errors.

Summary

Mastering the Perl 5 debugger is almost as useful as mastering Perl 5 itself. It
allows you to take part in the actual execution of your program, to examine and
experiment. It allows you to kill the bugs.

Jeremy Impson is a Senior Computer Science student at Syracuse University, in
Syracuse, NY, studying Operating Systems. He spent the past summer working
for IBM Global Services in Poughkeepsie, NY. He's been playing with Linux since
Spring 1995, and has been hacking Perl just as long. Outside of computing and
sleeping, he spends time studying history and cooking up strange recipes. You
can reach him at jdimpson@acm.org.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/049/toc049.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Building Reusable Java Widgets

R.J. Celestino

Issue #49, May 1998

An introduction to writing pluggable do-it-yourself widgets for the Java
programmer.

There is no getting around it, if you are programming with Java, eventually you
will need a specialized widget. I know, Sun Microsystems provides the Abstract
Windowing Toolkit (AWT) with every download of Java; however, the AWT's
small set of widgets and fairly low-level graphics will eventually leave you
wanting. When it's time to wow the boss, the customer or the dog, it's time to
roll up your sleeves and do it yourself.

This article examines some good techniques for extending the AWT. You will
not simply learn how to create interesting widgets. You will also (and perhaps
more importantly) learn how to make them reusable by employing good design
practices and adhering to the AWT's architecture. To do this I will introduce
some of the important concepts of the AWT's event model, hierarchy and
graphics. [Perhaps the most significant change from version 1.0x to 1.1x was
the shift from an inheritance-based event model to a more powerful
delegation-based model.] This article will deal solely with Java version 1.1x and
above, including the new event model.

I have written this article with the expectation that you have some basic
experience with Java. You will need to know how to compile and run Java code
to try out the examples. It would be a bonus if you have created the obligatory
“Hello World” applet and are familiar with layout managers.

There is nothing Linux-specific in this article. One of Java's primary strengths is
that it will run on any platform that has the Java virtual machine ported to it.
Not surprisingly, Linux is one. In fact, chances are good that your version of
Linux has Java compiled into the kernel. I have run these examples on various
versions of Linux and Solaris 2.5. If you wish to experiment with building
widgets on Linux, you will need to get a Linux port of the Java Development Kit

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

(JDK) from Blackdown or sunsite. Of course, you will be able to run the example
applets in any Java-enabled browser that runs on Linux—that would be
Netscape.

It Ain't Ugly, It's My GUI

If you write your GUI relying solely on the AWT, chances are pretty good that it
will be ugly. While the AWT provides an excellent framework for GUI
development, it was never meant to be the last word in GUI toolkits. The AWT
provides a set of “least common denominator” widgets, so if you are interested
in simple push buttons, sliders or text fields, the AWT has you covered.
Unfortunately, modern user interfaces often call for GUI controls beyond these
old standbys.

When your design requirements or creative wishes exceed the capabilities of
these standard widgets, you need to create your own. When the time comes
that you are ready to create your own widget, you will have choices. You could
create a very uncooperative widget which is tightly coupled with your
application. Or, you could choose to leverage the power of object-oriented
programming, and the existing architecture of the AWT. It should be no
surprise that I advocate the latter. If you agree, you will create open, reusable
widgets that can be used by anyone in the Java community, regardless of his
choice of operating system.

All the Other Widgets are Doing It

Linux users are a generally individualistic lot. Individuality has its place, but
when it comes to the architecture of your widget I advocate fitting in with the
crowd. When I go to the trouble of creating a widget I want to make sure that it
can be used over and over painlessly. I achieve this by adhering to the design of
the AWT. Although the AWT is not the most visually appealing widget toolkit, it
does provide an excellent framework for widget creation and interaction. By
working within the bounds of this framework we adhere to the basic
architecture of the AWT and get reusable widgets.

When you design your widgets to cooperate with the existing architecture, you
ensure that they are robust, maintainable and easily reusable by any Java
developer (including yourself). Your widgets will be “pluggable”. Any Java user
will be able to simply plug in the widget and use it like any other standard GUI
componet provided in the AWT.

Foundations of a Reusable Widget

There are several important aspects to keep in mind when designing and
creating widgets. In this section I will discuss some of these and evolve a
template for widget creation.

Superclass

In order to cooperate with the AWT, your widget must have Component as its
ancestor. I don't mean to imply that you must subclass Component directly;
here in fact, you can often inherit some useful behavior by subclassng further
down the hierarchy (see Figure 1 for a portion of the Component hierarchy).

Figure 1. A Portion of the AWT's Component Hierarchy

Your widget might be drawn on the fly or created from images stored on a local
or remote machine (GIFs for example). The Canvas class is a good choice for
this type of component. The Canvas class provides a blank area for drawing. It
will take some experience to be able to choose an appropriate superclass for
your widget. It is wise to take some time to study the Component hierarchy of
the AWT before choosing a superclass.

Events and Delegation

If your widget generates events, you have to stay within the bounds of Java's
event model. In the “early days”, Java used a cumbersome inheritance-based
event model. With the introduction of Java 1.1, the AWT sports a completely
modern, delegation-based event model. The concept is simple. When a user
interacts with a widget, it generates events. Objects can register an interest in
all or some of these events. These interested objects, known as listeners,
receive the events and take appropriate action. This process is known as
delegation. Listeners are delegated by the widget to handle the events they
generate.

When you create event classes, make sure they contain appropriate
information and are generated in response to appropriate user actions. It can
get confusing when you start to generate your own events. First, you create the
event classes. Next, you create a listener interface. This interface defines
methods of the listeners that will be called when an event occurs. Finally, you

create an event multicaster. Event multicasters have the job of broadcasting
events to many listeners. Sounds complicated, but hopefully it will become
clear after an example or two. Figure 2 is a diagram of the multicasting process.

Figure 2. Event Multicaster

Drawing

The appearance of your widget will not strictly affect its ability to be reused.
However, a widget's appearance should be in visual harmony with the rest of
your GUI. Here are some things to think about, which, while not hard and fast
rules, are important.

Modern widgets produce a 3D appearance by shading. Shading is created by an
imaginary light source that is positioned, by convention, at the upper left of the
widget. When a button is in the raised state, its upper and left borders are
brighter than the face of the button (see Figure 3). Its lower and right borders
are darker. This shading makes it appear to be raised. Swap the light and dark
areas, and the button will appear depressed (see Figure 4).

Figure 3. A Button in its Raised State

If your widget is drawn or has drawn areas on it, keep in mind the 3D effects
are what make it as attractive as possible. And remember, drawing occurs in
the paint method of your class. The AWT calls the paint method any time your
widget needs to be drawn.

Figure 4. A Button in its Pressed State

Widgets to Call Your Own

There are generally two methods you can use to create reusable widgets:
composition and specialization. Before continuing, let's take a moment to
discuss each method.

Composition Widgets that are created by composition are sometimes called
super-widgets or composite widgets. This type of widget is simply a collection
of other widgets that work together to accomplish a specialized task. You
should create a composite widget whenever you have a recurring task which
requires a number of sub-components working together. Some examples
include an order form, file dialog or a color chooser. When you create a
composite widget, it is important to hide the events of all its sub-components
and generate events at a higher level appropriate to the semantics of the
composite widget itself. You will see how this works in the e-mail entry widget
and the window-bar widget.

Specialization

Sometimes a widget is required that is slightly different from a standard AWT
widget. Perhaps you need to add some new behavior or look. It is in these
situations that you should consider creating a widget by specialization. When
you create a widget by specialization, you create a subclass and add or override
existing behavior. The power of inheritance gives you all of the behavior of the
superclass, so all you need to do is write the new code. An example we will
discuss is the VerticalSeparator, a subclass of Canvas. It overrides the paint

method to achieve its own special look. The vertical-separator is a good
example of this. The collapsing pane is a more subtle example of how to use
specialization.

Widget Examples

For the sake of clarity in the examples, I have kept the graphics to a minimum
and focused on the “nuts and bolts” of creating a reusable widget.

A note about style: I precede all of my instance variables with an underscore.
Variables in upper case are class variables (static variables), and variables in
lower case are generally temporary variables that have either been passed into
the method or defined within the current block. Class and interface names
always start with an upper case letter. Event classes always use “Event” as a
suffix, and listener interfaces always have “Listener” for a suffix.

Example 1. Vertical Separator

The first widget is a simple vertical separator. A separator should be familiar to
HTML users; the <hr> tag creates a horizontal rule. Separators are used to
separate groups of components. The vertical separator is a very simple widget.
It does not need to interact with any other widgets or objects. It is simply a
visual component. After a little thought I came to the conclusion that this
widget should be created by specialization, specifically by subclassing the
Canvas class. Canvas is a good choice here since the only duty of the vertical

separator is to render itself on the screen. Separators generally have an etched
look to them, as if they were carved into the screen.

1. Rendering an Etched Line

To create the 3D effect of etching, draw two lines next to each other, one
darker than the background, the other lighter. Here is a simple Java code
fragment to create two vertical lines—one will appear etched, the other one
raised. See Figure 5 for a picture of the two lines.

public void paint(Graphics g) {
 // draw a raised line
 g.setColor(_light) ;
 g.drawLine(5, 10, 5, 40) ;
 g.setColor(_dark) ;
 g.drawLine(6, 10, 6, 40) ;
 // draw an etched line
 g.setColor(_dark) ;
 g.drawLine(25, 10, 25, 40) ;
 g.setColor(_light) ;
 g.drawLine(26, 10, 26, 40) ;
 }

Figure 5. Etched and Raised Lines

Here is how I set the values of the two instance variables _light and _dark :

_light = getBackground().brighter().brighter() ;
_dark = getBackground().darker().darker() ;

Setting the values relative to the background color rather than a hard-coded
color makes the code more general. These lines will appear etched and raised
regardless of the background color of the region in which they appear.

1.2. Sizing the Separator

The vertical separator should fill its allocated space vertically and center in its
space horizontally. Within the paint method you can determine the space that
has been allotted and calculate its dimensions. Here is how I did it:

size = size() ;
int length = size.height ;
int yPosition = (size.width)/2 ;
g.setColor(dark) ;
g.drawLine(0, yPosition, length, yPosition) ;
g.setColor(light) ;
g.drawLine(0, yPosition+1, length, yPosition+1);

Now, there is one more critical method we need to override. Remember that I
have chosen to subclass Canvas. The Canvas class provides a default size of
0x0. This means that if the widget is laid out using its default size, it will not

show up. To achieve a meaningful default size, you need to override the
getPrefferedSize and getMinimumSize methods. I have chosen a region of 4x8
pixels for both its preferred size and its minimum size. Why did I choose 4x8?
The separator has an actual width of 2 pixels. Setting its preferred width to 4
gives it a 1 pixel buffer on each side. The preferred height of 8 pixels is
somewhat arbitrary—any value greater than 0 is acceptable, just so it is visible.
Remember if the separator is used properly, the layout manager will grow its
height to an appropriate value regardless of the preferred height.

You can see the completed VerticalSeparator class in Listing 1. Remember, we
built the vertical separator to fill the vertical space that is allocated, so be sure
to place it appropriately. The east and west portions of the border layout are
guaranteed to be vertical regions. If the separator is placed in either of those
regions, it will grow to fill the vertical region. If you place it in the north or south
regions, it will be sized to its preferred height of 8 pixels, which may not be
what you want. I recommend you read up on layout managers and how they
respond to a widget's need to be sized. Some completely disregard preferred
sizes. You can see an applet that uses the vertical separator in Figure 6.

Figure 6. The VerticalSeparator in Action

In this example I have introduced some fundamental concepts of drawing and
sizing. The goal of the vertical widget is simply to make your GUI look better.
This is a noble goal, but in the next few examples we are going to look at some
harder working widgets that really earn their keep. Before looking at those
widgets, here are a couple of challenges.

1.3. Exercises for the Reader

There are a few interesting extensions you could make to this class, and I leave
them to you:

• Generic separator: To create a horizontal separator you might want to
create a HorizontalSeparator class. But why not think about creating a
single class that does both depending on how it is placed? It would need
to know if it were placed in a vertical or horizontal region and render itself
appropriately.

• Additional features: The separator we created has a fixed width of 2 pixels
and is etched. Change or extend your class to support a variable width
and the option of etched, raised or flat.

https://secure2.linuxjournal.com/ljarchive/LJ/049/2627l1.html

Example 2. E-mail Entry Widget

The e-mail entry widget represents a simple entry form used to gather
information from a user. It is a composite widget built with standard AWT
components. This example widget is important in the way that it interacts with
other classes. This class broadcasts customized events which can be captured
by any interested object in the system. The ability to broadcast custom events
to listeners of those events is critical in creating a reusable widget. The e-mail
widget will have a done and cancel button. Remember, you do not want other
objects to have direct access to these buttons or the events that they generate.
Why? Suppose the e-mail widget changes down the line and no longer uses a
button click to signify completion. Every object that uses the class will break
and will have to be rewritten. If you hide these events, how can your widget
notify interested parties of its changes in state? You must generate widget
specific events and create listeners of these events. These events must make
semantic sense to the action of the e-mail widget. We will see how this is done
in a moment, but first let's create its visual appearance.

2.1. Layout

The visual layout of the e-mail entry form is created in its constructor. The
widget consists of a text field, a label and two buttons.

Class EmailEntry extends Panel implements
 ActionListener {
public EmailEntry() {
 super() ;
 _doneButton = new Button("Done");
 _cancelButton = new Button("Cancel") ;
 _emailField = new TextField(40) ;
 // build a sub-panel for the buttons.
 Panel = new Panel() ;
 buttonPanel.add(_doneButton) ;
 buttonPanel.add(_cancelButton) ;
 // install the components in the widget
 this.setLayout(new BorderLayout()) ;
 this.add("West", new Label(
 "Enter your e-mail address"));
 this.add("Center", _emailField) ;
 this.add("South", buttonPanel) ;
 // forward events to myself
 _doneButton.addActionListener(this) ;
 _cancelButton.addActionListener(this)
 }
}

Notice that in the widget subclasses Panel, I chose panel as the superclass so
that I can inherit its layout capabilities. Also notice the class implements the
ActionListener interface. This means that the class is allowed to listen to action
events (the events that are generated by buttons). Toward the end of the
constructor the class registers itself (in the call to addActionListener) as a
listener of both push buttons.

2.2. Create the Event Classes

You must determine the events that your widget will generate. I have chosen to
create a single event class, the EmailEntryEvent that can represent either “user
is done” or “user canceled” state. When you create your event class keep in
mind that it must maintain sufficient information to act on the event. In this
example the event must store the e-mail address that was entered. Listing 2
shows the EmailEntryEvent class. Notice that I have created two constructors.
When the constructor is passed an e-mail string, an e-mail entry event of type
done is created. If no information is passed to the constructor, an event of type
cancel is created. The e-mail entry widget has the responsibility of invoking the
proper constructor (a reasonable request of the widget).

2.3. Create a Listener Interface

When an event is broadcast to a listener, specific methods of the listener class
are invoked. You might think of these as “callbacks”. The listener interface
defines these methods. The interface ensures that any class intended to be a
listener has the methods needed to handle the event. The e-mail entry listener
interface is shown in Listing 3. Any class that wishes to be a listener of
EmailEntryEvents is required to implement a done method and a cancel

method.

2.4. Event Multicasters

Event multicasters handle asynchronous broadcasting of events to listeners.
You will be relieved to know that you do not have to write your own multicaster
from scratch. Instead you will need to create a subclass of the existing
AWTEventMulticaster and write a few methods so that it can handle your new
events. When you create your multicaster follow these steps:

• Implement the listener interface that you created in Listing 3.

• Create the add and remove methods using that same listener.
• Create the methods defined in the listener interface. These methods

simply forward the messages to the appropriate listeners.

Take a look at Listing 4 to see how I created the multicaster for this example.
Don't let the multicaster scare you. The code is very basic, cookie-cutter-style.
You will be relying on the superclass to do all of the hard multicasting work. All
that your multicaster must do is be aware of your new events and listeners.

2.5. Hooking it all up

We have now created all of the necessary components,, and what remains is to
connect it up properly. The first order of business is to complete the

https://secure2.linuxjournal.com/ljarchive/LJ/049/2627l2.html
https://secure2.linuxjournal.com/ljarchive/LJ/049/2627l3.html
https://secure2.linuxjournal.com/ljarchive/LJ/049/2627l4.html

EmailWidget class. As we left it, it only had a constructor. Next you must give it
the ability to add listeners. Here is the addEmailEntryEventListener method:

public void addEmailEntryListener(
 EmailEntryListener e) {
_emailEntryListener = MyMulticaster.add(
 _emailEntryListener, e) ;
}

Notice that the widget has an instance variable that maintains its listener. If you
look closely, you will see that this variable is actually an instance of your
multicaster class. Any widget can potentially have many listeners. Your
multicaster will maintain the list of listeners and ensure that they get their
appropriate events. Finally, you must handle the internal events (from the
buttons) and generate your new event.

public void actionPerformed(ActionEvent e) {
 EmailEntryEvent newEvent ;
 if (_emailEntryListener == null) return ;
 if (e.getSource() == _doneButton) {
 newEvent = new EmailEntryEvent(
 getEmailAddress()) ;
 _emailEntryListener.done(newEvent);
 }
 else if (e.getSource() == _cancelButton) {
 newEvent = new EmailEntryEvent() ;
 _emailEntryListener.cancel(newEvent);
 }

In this code you generate the widget specific events. When the done button is
pressed, a “done” event is created that stores the e-mail address. Otherwise a
“cancel” event is generated. Notice also how the event is dispatched: the
corresponding method is called on the multicaster (_emailEntryListener is an
instance of MyMulticaster). The multicaster then forwards the method call to all
of the registered listeners. The EmailEntry widget is now ready to be used by
any Java program. Listing 5 shows a simple applet that uses the e-mail entry
widget and intercepts the events. Take a look at the e-mail entry widget in
Figure 7.

Figure 7. The EmailEntryWidget in Use as an Applet

One important note: the e-mail entry class generates a done event. How is this
different from the action event generated by the done button? The difference is
subtle, but important. If you rely upon detecting the events of a specific button,
other classes need to know the details of the inner workings of your class. If
this changes, every class that uses it has to change as well.

https://secure2.linuxjournal.com/ljarchive/LJ/049/2627l5.html

2.6. Exercises for the Reader

Here are a few ideas for expanding the EmailEntry widget that you might enjoy
trying:

• Collect more information: Expand the widget by collecting more
information from the user. Add checkboxes, additional text fields and so
on. Remember that your event class has to maintain this information and
pass it on to the listeners.

• Add error checking: Check for things like the e-mail address being
complete and reasonable. Be sure that you are broadcasting the event
only if the form is completed correctly.

Example 3. WindowBar

The window bar is a component needed for the collapsing pane example
below. You click on the window bar and the pane collapses. Click on it again
and it opens up. To keep it simple I will use a button for the bar, rather than
creating a fancy visual bar. The bar must broadcast events to signal that the
pane should collapse or restore.

3.1. Layout

The layout of this widget is intentionally trivial, to keep the example simple.

public WindowBar() {
 super() ;
 _closer = new Button("Collapse") ;
 _closer.addActionListener(this) ;
 add(_closer) ;
}

3.2. Create Event Classes

For this widget we need an event with states of “collapse” and “restore”. This
will be very similar to our e-mail entry widget. Here is the PaneSwitchEvent:

class PaneSwitchEvent extend AWTEvent
{
 public static final int COLLAPSE = 1 ;
 public static final int
 RESTORE =2 ; private int _type ;
 public PaneSwitchEvent(Object source, int t)
 {
 super(source , 0) ; _type = t ;
 }
 public boolean isRestore()
 {
 return _type == RESTORE ;
 }
}

The pane switch event needs only to maintain the type of event that it
represents.

3.3. Create a Listener Interface

Let's continue down a familiar road and look at the PaneSwitchEventListener.
Here it is:

interface PaneSwitchListener extends EventListener
{
 public void restore(PaneSwitchEvent e) ;
 public void collapse(PaneSwitchEvent e) ;
}

Your listener defines the two methods invoked when the pane switch event
occurs. In this case it is restore and collapse.

3.4. Event Multicaster

The multicaster is very similar as well. Just as in the e-mail example, you must
create the add and remove methods that accept pane switch listeners as
arguments. Then create the collapse and restore methods. Note that you do
not need to create a new multicaster for each event class you create. You may
choose to have a single multicaster class for all of your widgets. I have chosen
to combine the events from both examples into one multicaster class. See
Listing 4 for details.

3.4. Hooking it Up

Finally, we need to complete the WindowBar widget. This widget will simply
change its text from “collapse” to “restore” and back again when clicked. In
addition it sends the corresponding event. Take a look at Listing 6 to see how
it's done.

3.6. Exercises for the Reader

• A visual window bar: Create a subclass of WindowBar that renders itself
graphically, instead of as a button. Read up on mouse listeners and
mouse events; you will need to listen for them.

• A more complete window bar: Consider additional actions such as
maximize, close, etc. What classes change and in what way?

Example 4. Collapsing Pane

The collapsing pane widget is a container containing exactly one component. It
provides a window bar across the top, and the contained component takes up
the rest of the area. When the bar is clicked, the widget collapses to display just
the window bar. When the bar is clicked again, the component is restored. This
widget does not need to generate events. However, it does need to listen for
events from the window bar and take action based on them.

https://secure2.linuxjournal.com/ljarchive/LJ/049/2627l6.html

4.1. Layout

The CollapsingPane class is a subclass of Panel. I install BorderLayout as its
layout manager. The component that will be collapsible is installed in the center
area, and the window bar is installed in the north.

class CollapsingPane extends Panel implements
 SwitchPaneListener {
 public CollapsingPane(Component c) {
 setLayout(new BorderLayout()) ;
 WindowBar bar = new WindowBar() ;
 add("North", bar) ;
 add("Center", c) ;
 bar.addCollapseListener(this) ;
 }
}

4.2. Handle Events

This class does not generate events, but it must handle them. It is listening for
switch pane events. When it receives a collapse event it must collapse, and
restore itself upon reception of the restore event. We have seen how to listen
for events and trap them (take a look at the collapse and restore methods in
Listing 7). Now, let's look at what to do when we receive the event. In particular,
how do you go about collapsing a component? Every component in the AWT
can have its visibility set true or false. But simply setting its visibility is not
enough; you must also re-compute the layout and redisplay the parent
component. Here is how I did it:

private void redraw() {
 Component x = _containedComponent ;
 while(x.getParent() != null)
 {
 x = x.getParent() ;
 }
 x.validate() ;
 x.repaint() ;
}

This method simply searches up the component tree until it finds the top
window (your applet most likely, but it could be a free-floating window or an
application frame). Once the topmost window is found, I ask it to validate. This
will cause the layout to be re-computed (items that are not visible will not be
included) and re-displayed. An example of the collapsing pane widget is shown
in Figure 8. This example uses the e-mail entry widget as the component that is
collapsed.

Figure 8. CollapsingPane Widget Used in an Applet

https://secure2.linuxjournal.com/ljarchive/LJ/049/2627l7.html

4.3. Exercises for the Reader

Modify the class to accept any arbitrary window bar. You can do this by adding
a method to set the window bar or create a new constructor. Remember that in
order for the class to the work, the window bar you install must be a subclass
of WindowBar. Also, you might think of a way to remove that restriction using
interfaces.

Conclusion

We have discussed techniques for designing Java Widgets that are reusable.
The resulting widgets are powerful and pluggable enough to warrant the extra
effort involved. This article is a starting point, and I encourage you to explore
and experiment with new and innovative ideas for your own widgets. I have
chosen to focus on the capabilities and design goals. I strongly recommend that
you extend these widgets to give them visual “punch”.

You can download all of the examples from this article from Linux Journal's FTP
site (see Resources) or from the Harris web site at http://www.hisd.harris.com/
Capabilities/java/. At the Harris web site you will be able to see the applets in
action and explore some more advanced iterations of similar widgets.

R. J. (Bob) Celestino holds an undergradutate degree in Mechanical Engineering
and advanced degrees in Electrical and Computer Engineering. He has been a
Linux devotee for more than four years. When not recompiling his kernel or
pushing Java to its limits, he enjoys spending time with his wife and three kids.
He pays the bills by posing as a software engineer at Harris Corp. in sunny
Florida. He can be reached via e-mail at celestinor@acm.org.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/049/2627s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/049/toc049.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Building a Distributed Spreadsheet in Modula-3

John Kominek

Issue #49, May 1998

Mr. Kominek introduces us to the Modula-3 language and shows us how it can
be used for cross-platform programming.

Back when Borland introduced Turbo Pascal 1.0, Philip Khan did something
shrewd: he included the source code for a simple spreadsheet, which is why
many programmers bought the product. At a time when Lotus 1-2-3 was the
killer application, nothing was more enticing than a glimpse of its key data
structure—the sparse matrix.

Of course, the spreadsheet is no longer leading edge. So what might its
updated version be? Judging by recent market fanfare, I'd say a spreadsheet
that is distributed, multi-platform and web-aware. How would you go about
building one?

Delphi, the most recent incarnation of Pascal, is not a bad choice—provided
you can live within Windows alone. For us, however, Linux compatibility is a
must. You could try to master the intricacies of CORBA, but that standard is
now engaged in a turf war with Microsoft's DCOM, a creature of even more
convoluted behavior. However, there is another choice available to the Linux
programmer.

The Modula-3 language and its surrounding system offer a simple, clean,
mature and robust tool for writing distributed applications. (See the sidebar “A
Brief Biography”.) In this article I'll highlight the steps necessary for building a
distributed spreadsheet. My goal is not to provide a full-fledged product, but
rather a framework of code that illustrates all the key components.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/049/2690s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/049/2690s1.html

A Distributed Application Framework

There are three senses in which a piece of software can be considered
“distributed”.

1. The data and computation can be divided into separate processes. In
particular, the data can be viewed from multiple clients (GUI viewers),
even though it is stored elsewhere.

2. The executables can reside on separate machines—for instance, a pair of
Linux servers supporting some mixture of Windows and Linux clients.

3. The work can be distributed between people. You and I may be
collaborating remotely on the same spreadsheet, with precautions taken
to ensure that I don't overwrite your entries by mistake.

Compared to traditional applications, distributed software is harder to design
and get right. In spite of this, it allows for growth and flexible organization.

Software Ingredients

Three basic ingredients are required by our task:

1. A spreadsheet object: Initially, it is enough to use a two-dimensional array.
Once our application is up and running, experience will help refine the
object's interface. Later, the fixed array can be replaced with a sparse
matrix.

2. A display widget: Having the user interface separate from the data eases
modifications and simplifies the task of cross-platform deployment.

3. Connecting glue: The spreadsheet object and display widget need to be
able to talk to each other.

In Modula-3, Network Objects provide the connecting glue. The beauty is that
as far as your code is concerned, invoking an object somewhere on the Net is
nearly as easy as one inside your own program. Most of the hard work is done
for you.

About Modula-3

As a modern, general purpose systems programming language, Modula-3 is
lean in design, yet practical and powerful. Applications range from the fun
things (multiuser games), to the serious (operating systems), to the deadly
serious (911 call centers). Ten years of use has made the reference compiler
solid and dependable.

Current implementations exist for Win32 and popular incarnations of Unix. The
Linux port, in particular, receives constant attention. Several versions are

available for download, including the full source tree. (For pointers, see the
sidebar “Modula-3 Resources”).

Beyond openness, the language has numerous features to recommend it,
including:

• A clean, Algol-derived syntax
• Explicit support for modules and interfaces
• A mechanism for calling external C code and libraries
• Both traditional and object types (with single inheritance)
• Built-in threads and mutexes for multi-threaded programming
• Assertions and exceptions to support error handling
• An incremental garbage collector to simplify memory usage

If this reminds you of Java, that's no accident. Though the syntax of Java is
derived from C++, many key improvements descend directly from Modula-3.
One implementation of Modula-3 even allows mix-and-match integration with
Java.

Features located in “the first ring out”, though not defined in the language itself,
include:

• Quake, a simplified build language that replaces make

• Standard libraries of algorithms and container objects
• A lightweight database component
• A multi-platform windowing system with user interface toolkit
• Network objects

Network objects allow us to proceed in stages. First, a spreadsheet can be
constructed as a single executable. Next, as multiple processes running on one
machine. Finally, as multiple processes running over multiple machines. The
jumps between stages are small.

Step 1: Basic Construction

We need some underlying data structure for our spreadsheet, so let's begin
simply by typing:

TYPE
 Grid: REF ARRAY OF ARRAY OF INTEGER;

or

TYPE
 Grid: REF ARRAY OF ARRAY OF Money.T;

https://secure2.linuxjournal.com/ljarchive/LJ/049/2690s2.html

This defines a two dimensional grid of integers (in the first line), or, as a second
option, of type Money.T. Integers are a built-in type. Money.T is a programmer-
defined type; the “.T” suffix is a Modula-3 convention. (In a real spreadsheet,
each column would have a distinct user-defined type. Let that detail pass for
now.)

A new grid can be allocated on the heap during variable declarations, if you
wish, or during program execution.

VAR
 myGrid : Grid := NEW (Grid, rows, cols);
BEGIN
 myGrid := NEW (Grid, 100, 20);
END.

The second assignment of myGrid will wipe out the first, but don't be alarmed
—we do not have a memory leak. The Modula-3 garbage collector takes care of
reclaiming lost memory. This is also true of object variables (no destructors
necessary), including objects that allocate memory on remote machines.

To flesh out our spreadsheet object, we next attach some operator methods to
the grid. A good place for this is in a separate “interface” file. Listing 1 contains
an initial cut at spreadsheet.i3. Our object is now declared to be a
Spreadsheet.T type.

The important property of an interface is that it contains no executable code
whatsoever. That's reserved for “.m3” or module files. The interface does not
say how something is computed, merely what it does. This is similar to .h files
in C, but is more strict. Only the operations explicitly exposed in an interface—
or “exported” to use the jargon—are available for outside use.

(The sharp reader may have noticed that the representation of Grid is exposed
in spreadsheet.i3—a bad thing. Modula-3 does allow you to hide details of
representation inside implementation files. That would take us into a
discussion of opaque types, however, a more advanced topic.)

Step 2: User Interface Design

Modula-3 comes with a multi-platform windowing system called Trestle. Built
upon Trestle is a user interface toolkit called VBTkit, and a UI builder,
FormsVBT. You may call X directly if you wish (alternatively, the Win32 GDI), but
in doing so you lose portability.

A description of your program's user interface is called a “Trestle Form”. A form
is a textual description of names and values, organized using nested
parentheses. Form elements consist of windows, frames, buttons and so on, as

https://secure2.linuxjournal.com/ljarchive/LJ/049/2690l1.html

well as properties such as color. Listing 2 is a sample form for a popup
calculator, as shown in Figure 1.

The important point is that a form is defined in its own file, outside any
Modula-3 code. This separation of concerns proves valuable when the user
interface designer is a different person from the primary coder. The form does
not describe how to construct the interface, merely what it looks like. The
FormsVBT library builds it at run time and hooks it into your code.

Figure 1. Appearance of Calculator.fv

Step 3: Building the Program

Suppose our spreadsheet is implemented, along with a suite of test functions.
To build a program, we must inform the compiler what source files comprise
our executable. This is done in a Modula-3 make file, or m3makefile. An
example is shown in Listing 3.

To build your program, at the command-line prompt type:

m3build

The compiler will determine dependency relations for you, recompiling only
what is necessary.

Step 4: Objects to Network Objects

Converting a regular object (restricted to a single address space) to a network
object (visible over the Net) is not as difficult as you might imagine. You must
attend to four details.

First, the network object library needs to be linked in. This is performed in the
m3makefile (Listing 3).

https://secure2.linuxjournal.com/ljarchive/LJ/049/2690l2.html
https://secure2.linuxjournal.com/ljarchive/LJ/049/2690l3.html

Second, make the following two changes to the spreadsheet interface:

IMPORT Money;
IMPORT NetObj; (* new statement *)
 TYPE
 T = NetObj.T OBJECT (* modified line *)
 grid: Grid;
 name: TEXT;
 METHODS
 ...

Third, and this matters only at execution time, a network object daemon needs
to be running in the background. The program is supplied as part of Modula-3.
Start the daemon by typing:

netobjd &

In a client-server architecture, the spreadsheet object resides with the server,
yet it is the client that issues method calls (to update a cell, for example). Clients
need to find out about each other. This is the fourth detail.

Step 5: Distributed Deployment

The netobj daemon acts like a bulletin board. First, the server posts a note
saying, “I've got a spreadsheet object for sale.” Then the client comes along and
says, “I'll buy that.” The server exports; the client imports; the daemon
mediates. In the nomenclature of CORBA, the daemon is an object request
broker. Once the sale is complete, the client and server talk to each other
directly. Code details are found in Listing 4.

Listing 4 will work when the server and client are located on the same machine.
Suppose instead that the server runs on some Linux box—eggnog.cmu.edu—
and that the clients are elsewhere. Ensure that netobjd is running on eggnog
and change one line in the client program.

address := NetObj.Locate("eggnog.cmu.edu");

With that, our programs now talk over the Net.

Step 6: Cell Range Locking

Because Modula-3 comes ready-made with thread support, it also provides
mutexes (mutual exclusion semaphores) so that parallel operations on the
same datum are serialized. In our discussion so far, the Money.T type has been
left unspecified. It might actually be something like this:

INTERFACE Money;
TYPE
 T = MUTEX OBJECT
 cents: INTEGER;
 END;
END Money.

https://secure2.linuxjournal.com/ljarchive/LJ/049/2690l4.html

Mutexes protect data so that client B does not modify values before client A is
finished. Granted, protecting each cell separately is overkill. A more elegant
approach is to protect ranges of cells, with the lock initiated by user action.

Figure 2 shows a spreadsheet from the point of view of user A (Alice). She is
working on the cell range tinted red. User B (Bob) cannot modify these cells. He
is working on the blue cells, indicating to Alice that to her they are read only.

Figure 2. Simple Multiuser Spreadsheet

Step 7: Porting Procedure

To port our user interface program from Linux to Windows NT, do the
following:

1. Archive the client source code by using the tar command.
2. Copy the tar file to your Windows machine.
3. Unarchive the file using tar. Convert end-of-line markers.
4. At the command line, type m3build.

Assuming there are no stunts of low-level programming, all the Modula-3 code
in this example—including the GUI—is transparently portable. Differing path
name conventions, for example, are hidden behind OS-independent interfaces.
There's not an #ifdef in sight.

Conclusion

In this article I've highlighted the creation of a multi-platform, distributed
spreadsheet using Modula-3. The key step is to wrap the spreadsheet into a
network object. In this way, remote objects may be invoked with exactly the
same syntax as local objects. Most of the hard work is done for you.

Modula-3 is not the only means for creating distributed applications, but in my
mind it strikes an optimal balance between simplicity and power. By its very
intent, it is a language for building large, solid systems in order for you to get
your work done.

Clearly, my discussion has omitted many details. To help fill this gap, a
companion tutorial is available on the Web (see the sidebar “Getting Started”.)
Full source code is available for experimentation and invention.

John Kominek holds a master's degree in Computer Science from the University
of Waterloo, and is currently a graduate student at CMU. When pressed, he
admits to pronouncing Linux to rhyme with Linus. He can be reached via e-mail
at jkominek@cs.cmu.edu.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/049/2690s3.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/049/toc049.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Doubly Linked Lists and the Abstract Data Type

Carl J. Nobile

Issue #49, May 1998

The ADT concept is at the heart of object-oriented programming and cross-
platform development. Mr. Nobile gives us an example with his doubly linked
list libraries.

Experienced C programmers seeking relief from the drudgery of writing linked
lists and dealing with the attending problems of keeping them, somehow,
isolated from the rest of their code will appreciate this doubly linked list library.
Those who are at an earlier stage in their C programming may also find here a
useful tool for enhancing their cross-platform programming skills, as this linked
list can serve as an example of an abstract data type (ADT).

What is an Abstract Data Type?

Using ADTs allows the data in a specific piece of code to be hidden from other
pieces of code that don't need and shouldn't have access to it. This is often
called modular programming or encapsulation. The idea behind the ADT is to
hide the actual implementation of the code, leaving only its abstraction visible.
In order to do this, one needs to find a clear division between the linked list
code and the surrounding code. When the linked list code is removed, what
remains is its logical abstraction. This separation makes the code less
dependent on any one platform. Thus, programming using the ADT method is
usually considered a necessity for cross-platform development as it makes
maintenance and management of the application code much easier.

The ADT concept is developed here via the example of how the doubly linked
list Application Programming Interface (API) was created. The doubly linked list
(DLL) can also be an independent C module and compiled into a larger
program.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

The Doubly Linked List

The DLL package consists of two C modules: dll_main.c comprises the DLL itself
and dll_test.c creates an executable program for testing the DLL's functionality.
There are also three header files: dll_main.h is included in dll_main.c, linklist.h is
included in your application program, and dll_dbg.h is used for debugging the
DLL or the DLL's implementation in your application. A word of warning needs
to be expressed here: the header dll_dbg.h should never be compiled into a
production program, as doing so circumvents the whole concept of ADT
programming. The entire package has been compiled on three platforms with
four compilers and includes three of the respective Makefiles. Only one of the
platforms exhibited any problem because of a compiler that was not fully ANSI
compatible. More will be said about platforms later.

Before we get into the philosophy behind this DLL, I want to explain what my
goals were when I decided to write this library. It first had to be platform-
independent and instantiable; in other words, the DLL had to handle an
unlimited number of instances of linked lists in any one or multiple programs
concurrently. Also, it had to be robust.

Figure 1. Layout of Doubly Linked List in memory. The arrows indicate to what
the Prior and Next pointers point. The Current pointer can point to any Node
Struct, so it is open-ended.

In order to fulfill the first requirement, I decided to strictly adhere to the ANSI C
standard, and, with the possible exception of how one sets up one's data and
uses the DLL's input/output functions, there should be no endian (byte order)
problems. The second requirement was met with the creation of a top-level
structure. There is only one of these structures per linked list. It keeps track of
the node pointers, the size of the applications data in bytes, how many nodes
are in the list, whether or not the list has been modified since it was created or
loaded into memory, where searching starts from, and what direction a search
proceeds in. Figure 1 illustrates how the top-level structure is integrated into
the DLL.

typedef struct list
 {
 Node *head;
 Node *tail;
 Node *current;
 Node *saved;
 size_t infosize;
 unsigned long listsize;
 DLL_Boolean modified;
 DLL_SrchOrigin search_origin;
 DLL_SrchDir search_dir;
 } List;

This and the next typedef structure remain hidden from the application
program. The node pointers mentioned above are defined in the next

https://secure2.linuxjournal.com/ljarchive/LJ/049/2693f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/049/2693f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/049/2693f1.jpg

structure, which includes the pointers to the application's data and the pointers
to the next and prior nodes. One of these structures is created for each node in
the list.

typedef struct node
 {
 Info *info;
 struct node *next;
 struct node *prior;
 } Node;

The last definition is a dummy typedef of the user's data. It is defined as type
void so that the DLL's functions will be able to handle any of C's or an
application's data types.

typedef void Info;

As you can see, if the two structures mentioned above are hidden from the
application, all of the ugly innards of how the linked list operates will by default
be hidden from the application. Thus, we have an abstract data type.

Application Programming Interface

The interface itself follows logically. The first argument of all the DLL's API
functions is a pointer of type List. This pointer can easily be changed to
different lists, thereby accommodating the instantiation requirement of the
DLL.

The API's 25 functions are broken down into seven function groups: three
initialization, three status, four data modification, six pointer manipulation, six
search, two input/output and one miscellaneous. The initialization group
handles the creation, initialization and destruction of the DLL. The status group
returns various types of information about the DLL. The pointer manipulation
group allows the arbitrary repositioning of the current pointer. The data
modification group adds and deletes nodes. The search group returns node
information based on keyed data fields or on absolute node position. The
input/output group saves or retrieves node data to or from a disk file. The
miscellaneous group currently only supports version information.

The function prototypes that follow will return two or more enum types or the
boolean type. Some functions have a void return value.

typedef enum
 {
 DLL_NORMAL, /* normal operation */
 DLL_MEM_ERROR, /* malloc error */
 DLL_ZERO_INFO, /* sizeof(Info) is zero */
 DLL_NULL_LIST, /* List is NULL */
 DLL_NOT_FOUND, /* Record not found */
 DLL_OPEN_ERROR, /* Cannot open file */
 DLL_WRITE_ERROR, /* File write error */
 DLL_READ_ERROR, /* File read error */
 DLL_NOT_MODIFIED, /* Unmodified list */

 DLL_NULL_FUNCTION /* NULL function pointer */
 } DLL_Return;

typedef enum
 {
 DLL_FALSE,
 DLL_TRUE,
 } DLL_Boolean;

What follows is a short description of all the functions in the API. It is not
possible to describe all the intricacies of how the functions are called and what
they each return in a short article like this. For this information, refer to the
documentation and source code in the distribution.

Initialization

First we need to create a list pointer.

List *listname = NULL;

To create the top-level structure, execute the following function:

List *DLL_CreateList(List **name);

After this structure is created it needs to be initialized using the next function:
DLL_Return DLL_InitializeList(List *list,
 size_t infosize);

That's it—one instance of the DLL is ready to work with; however, there is one
last function in this group that is used when we want to permanently remove
the list and the top-level structure.

void DLL_DestroyList(List **name);

Notice the pointer to pointer notation again; this is used so that name can be
returned as a NULL pointer. The C standard function free does not set the
pointer; it is passed to NULL after deallocating its memory. This can cause a
possible problem if that pointer should unwittingly be reused.

I've written a template (see Listing 1) of the initialization sequence. This and the
source code in the distribution should help in using the DLL.

Status

The next function tests pointers in the top-level structure to determine if there
are any nodes in a list.

DLL_Boolean DLL_IsListEmpty(List *list);

https://secure2.linuxjournal.com/ljarchive/LJ/049/2693l1.html

The inverse of this function, which follows, creates a new node to see if there is
enough memory for a new node. If there is sufficient memory, the temporary
node is freed.

DLL_Boolean DLL_IsListFull(List *list);

To get the number of nodes (records) in the list use this next function.
unsigned long DLL_GetNumberOfRecords(List *list);

Data Modification

The process of adding new nodes to the linked list can be as easy or as complex
as you desire. The following function has the ability to do an insertion sort as it
adds nodes or just stick the nodes on the end. Don't let the list of arguments
scare you; the function prototyping makes it look worse than it really is.

DLL_Return DLL_AddRecord(List *list, Info *info,
 int (*pFun)(Info *, Info *));

The first argument is a pointer to the top-level structure, which is the same in
all the functions. The second argument is a pointer to the data you want to put
into the linked list. The third and last argument points to an optional function
that you could write, which determines the sort criteria.

It is worth reviewing how this function should be written, as it shows up again
in two other functions described below. It emulates the way the C standard
function strcmp returns its value. As a matter of fact, it can be just that.

int compare(Info *newnode, Info *keylist)
 {
 return(strcmp(newnode->key_element,
 keylist->key_element));
 }

Updating the current node (record) is a must in any linked list implementation,
and this DLL API is no exception.

DLL_Return DLL_UpdateCurrentRecord(List *list,
 Info *record);

We would also want to delete the current record.
DLL_Return DLL_DeleteCurrentRecord(List *list);

The last function in this group deletes the entire list but not the top-level
structure.

DLL_Return DLL_DeleteEntireList(List *list);

Pointer Manipulation

As shown above, there are four pointers in the top-level structure. We concern
ourselves here with the current pointer. This pointer is where all the power in
the DLL comes from and is used in many of the DLL's functions to determine
what to work on.

The next two functions move the current pointer to the head or tail of the list.

DLL_Return DLL_CurrentPointerToHead(List *list);
DLL_Return DLL_CurrentPointerToTail(List *list);

Often, incrementing or decrementing the pointer is necessary:

DLL_Return DLL_IncrementCurrentPointer(List *list);
DLL_Return DLL_DecrementCurrentPointer(List *list);

It is sometimes desirable to store the current pointer, then do something else,
and then restore the pointer. We take care of this in the next two functions.

DLL_Return DLL_StoreCurrentPointer(List *list);

DLL_Return DLL_RestoreCurrentPointer(List *list);

Search

There is little use having a linked list if you cannot find what has been stored in
it. The following functions let you find your data and specify exactly how that
data will be found.

DLL_Return DLL_FindRecord(List *list, Info *record,
 Info *match, int (*pFun)(Info *, Info *));

The first argument, as usual, is the pointer to the linked list. The second is a
pointer to the returned data. The third is a pointer to the matching criteria, and
the last argument is a pointer to the compare function that was previously
described in the data modification group. This compare function can be
constructed differently, but the idea is the same.

Now life gets a little difficult. The above function needs to know how to look for
the data in the linked list. Does it look down from the head pointer, up from the
tail pointer, or up or down from the current pointer? My solution to this
problem was to use a state table.

There are two more typedef enumerations needed, relating to the state table,
one to set the origin of the search and the other to set its direction.

typedef enum
 {
 DLL_ORIGIN_DEFAULT, /* Use current origin

 * setting */
 DLL_HEAD, /* Set origin to head pointer */
 DLL_CURRENT, /* Set origin to current pointer */
 DLL_TAIL /* Set origin to tail pointer */
 } DLL_SrchOrigin;
typedef enum
 {
 DLL_DIRECTION_DEFAULT, /* Use current direction
 * setting */
 DLL_DOWN, /* Set direction to down */
 DLL_UP, /* Set direction to up */
 } DLL_SrchDir;

The state table defaults at initialization to DLL_HEAD and DLL_DOWN. The
DLL_FindRecord function uses these values if not changed. To change the
operation of this function, use the next two functions shown. If no change is
desired in either of these two functions, use DLL_ORIGIN_DEFAULT or
DLL_DIRECTION_DEFAULT. The first function sets the table to new values:

DLL_Return DLL_SetSearchModes(List *list,
 DLL_SrchOrigin origin, DLL_SrchDir dir);

The second function returns a pointer of a copy of the state table to the
following structure:

typedef struct search_modes
 {
 DLL_SrchOrigin search_origin;
 DLL_SrchDir search_dir;
 } DLL_SearchModes;

The purpose of this function is to check how a succeeding search will be
conducted by interrogating the state table.

DLL_Return DLL_GetSearchModes(List *list);

Last in this group are three functions that return data relative to the location of
the current pointer. They are not affected by the state table.

DLL_Return DLL_GetCurrentRecord(List *list,
 Info *record);
DLL_Return DLL_GetPriorRecord(List *list,
 Info *record);
DLL_Return DLL_GetNextRecord(List *list,
 Info *record);

Input/Output

Generally, input and output functions would not be considered a part of a
linked list implementation; however, they do make life a bit easier when using
ADTs. Without these functions one would have to set the current pointer to the
head or tail of the list and then make repeated calls to one of the DLL_Get
functions mentioned above. If sorting during this process were needed, the
task would be even more tedious.

Writing to or reading from a disk tends to be very platform specific. I have
striven to make the next two functions as generic as possible; they open files in
binary mode and write or read the Info structure from beginning to end.

Depending on how you enter data in the Info structure will determine if there
will be any endian problems.

To save a list, determine the full path to the file, then pass its pointer to the
next function. There are no sorting options with this function, because the list is
presumably sorted in memory and will be saved in that order.

DLL_Return DLL_SaveList(List *list,
 const char *path);

When loading a file from disk, you have the option of sorting the list as it comes
into memory. Passing a NULL loads the file as it exists on the disk and loads it
faster than if the list is sorted.

DLL_Return DLL_LoadList(List *list,
 const char *path, int (*pFun)(Info *, Info *));

Miscellaneous

This last group has only one function in that it returns version information, so a
program can determine if it is linking to a different version and check for any
incompatibilities.

char *DLL_Version(void);

What Use is It?

The short answer is it is used for just about any type of data storage where you
don't know how much data is to be stored. One example that I've been working
with is 3D graphics data where there could be an unknown number of objects
in a scene. I've written bar code scanning software that uses this DLL to keep
track of all the hand-held terminals that are in use. I also worked on a database
conversion program that reads data into one linked list, allowing you to edit it;
it then converts the data to another linked list and writes it out again.

Compiling

I'll mainly concentrate on compiling the Linux version; however, there are two
Makefiles for DOS: one that compiles using the DJGPP GNU compiler and the
other for the MS6.0 compiler. All three Makefiles are included in the
distribution. If anyone is interested, there is also a slightly modified version of
the DLL that compiles on Big Blues 4690 OS (FlexOS) using the Metaware C
compiler (this OS is used in point-of-sale systems).

First, we need to use tar to extract the files into the directory where you want it
to reside.

tar -xvzf linklist.1.0.0.tar.gz -C /your/path

The tar file will create a directory named linklist and put everything in it. Next,
use cd to move to the linklist directory and type one of the following, assuming
you're using the GNU compiler:

make

creates a shared library, or
make static

creates a static library.

To install the library in the /usr/local/lib directory, enter either make install or
make install-static.

That's all there is to it. You're now ready to write some code.

Conclusion

The concept of the ADT is at the core of object-oriented programming and, as
mentioned previously, central to cross- platform development. My linked list
example should be of use as either a practical or a learning tool.

Carl J. Nobile currently writes point of sale software and is the administrator of
an AIX Unix system for Genovese Drug Stores in New York. At home he is
working on a program that can be used to design geodesic homes using ideas
from Buckminster Fuller's Synergetics. He can be reached electronically at
cnobile@suffolk.lib.ny.us.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/049/toc049.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

The Importance of the GUI in Cross Platform Development

Michael Babcock

Issue #49, May 1998

The fragmentation of development energy into too many GUI toolkits is one of
the most serious problems facing the Linux community today.

The key question in making your program cross platform is how to port the
GUI. One solution is to write separate GUI front-ends for each platform. This
gives you great flexibility and lets you hand-fit each interface to the target
system, but soon you find you are rewriting the same interface ideas from
scratch. You start to wonder if you shouldn't abstract out some concepts, such
as creating a button or drawing a line, and use that abstraction instead. This is
precisely what portable GUI toolkits already do. So instead of re-inventing the
wheel, or, widget, you will probably want to choose a GUI toolkit and hopefully
even improve it.

Wrapper vs. Emulated

There are two approaches to providing platform-independent GUI functionality.
The wrapper approach wraps the native system widgets in an abstraction layer
that provides a common functionality among the different systems. The
emulated, or pure, approach simply intercepts the native drawing calls and
then uses those calls to implement its own widgets.

Wrappers are easier to program because you don't have to write your own
widgets. The look and feel of the native target platform is easily maintained
because, under the wrapper, you are using the native system widgets.
However, wrappers also lose flexibility because they can only provide what the
native widgets already provide—a “lowest common denominator” approach to
portability. They can't be extended. They do not allow you to exploit the full
power of a toolkit.

I personally prefer the pure or emulated widgets over the native wrapper
classes. If you are impressed with certain native widget features in the latest

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

release of Windows, you may fear that emulated widgets will lag behind those
native, wrapped widgets. For me, it's the other way around. I see the emulated
approach as having the flexibility to exceed native platform features. I believe
that if the majority of free GUI toolkit makers were working on a common
“Linux GUI API”, we would soon outpace Windows and other company-
controlled GUI development with the excellence of our new and emulated
widgets.

I'm working on programs that need to be fully multilingual, including fairly
complicated composition of Chinese, Japanese and Korean characters (kanji).
I'm not impressed with the new native widget features of Windows; they don't
come close to doing what I need. So with widget wrappers I'm stuck basically
rewriting every widget from scratch based on a Canvas widget, whereas with
pure widgets I can use the usual object-oriented techniques to extend existing
widgets (assuming the API is well-designed). This provides greater flexibility and
consistency when writing GUI applications.

For Linux and UNIX there is another problem with native widget wrapping; it is
not clear what constitutes native widgets. In Windows and Macintosh this is
obvious. But there is no standard GUI API for UNIX (other than the X protocol,
which is not a full GUI). The closest UNIX gets is Motif, which is not really a
standard and is not free. In other words, in the Linux world, even before you
consider questions of portability, you first must choose a GUI library. You must
determine what widgets will be your native widgets. In addition to providing all
the widgets and structure you want for Linux programs, your chosen GUI
toolkit may offer assistance in cross-platform development. And that is what
you want. Programming is now more efficient, as you only have to master one
set of tools.

The Programming Language Interface

Since C and C++ are so popular, most of the toolkits have C or C++ interfaces. In
fact, most of the time it is C++ because object-oriented programming seems
particularly applicable to GUI code. However, some, such as Fresco, attempt to
be language neutral and potentially provide an interface to almost any
language. These toolkits come as libraries that must be compiled and linked for
each target system. On the other hand, there are the interpreted languages
such as Smalltalk, Tcl and Java that can run on multiple systems without having
to be compiled for each one. Then there are the toolkits written in C, such as
GTK, that can be called from many other languages such as Scheme, Python or
Perl. (Note that GTK is not currently cross platform, but see below.)

Linux needs a standard GUI API. It's not that all applications must end up
looking and even acting alike as in Windows, but they should be consistent in

certain areas; for example, a consistent desktop, consistent help system, cut
and paste, drag-and-drop and so forth.

The fragmentation of development energy into too many GUI toolkits is one of
the most serious problems facing the Linux community today. There is some
recognition of the magnitude of the problem but nobody can agree on which
GUI toolkits to use. A good example is the Gnome and KDE desktop projects;
Gnome uses GTK, and KDE uses QT.

For Windows and Macintosh, it's simple; you don't have a choice. Naturally, I
prefer the fecundating chaos of the world of Linux and GNU to the stifling
dictatorial conformity of the Microsoft domain but, as a programmer, it would
be satisfying if the choice of GUI toolkit were a no-brainer. It would be nice if
there were such a thing as the “Linux GUI API” so that the synergy of the Linux
developers' community could better foster the creation of innovative and
compelling programs rather than merely innovative but unfinished tools.

A Look at What's Out There

In contrast to the well-focused, Linus-centered Linux kernel development,
everyone has their own idea for GUI toolkits and proceeds in their own
direction. They usually only make it 90% of the way. A new toolkit comes along,
reduplicates the first 90%, then fades away or is overtaken by another toolkit
that charges ahead but never reaches the goal. These GUI toolkit development
projects cannot seem to sustain the energy and support needed to add that
last 10%. The contents of this “last 10%” vary, but usually include such things as
support for internationalized input methods and fonts, and threads. This is
frustrating, to say the least.

If I had my way, Fresco would be the number one toolkit for everyone to work
on. However, I can't force anyone to do that, and I can't do it all myself. Many
others, with different favorites, are in a similar predicament.

Not everyone will share my taste (understatement), but here are my
thumbnails of some of the most promising candidates. Note that most of my
own interest in cross-platform development has been for Linux (UNIX/X11) and
Windows. If a solution also supports Macintosh and OS/2, it's merely an extra
bonus. I have favored toolkits that are free and unencumbered of odious
licensing restrictions. There are about 100 GUI Toolkits listed on the “GUI
Toolkit, Framework Page”, so clearly this is just a small sampling.

Fresco

Fresco is an object-oriented user-interface toolkit, designed by Mark Linton,
among others. Mark Linton led the development of the InterViews toolkit at

Stanford, and he seems to have learned a lot about GUI API design from that
experience. Fresco is implemented in C++ (Ada and Java versions are also
available) but the programming interface is written in IDL (Interface Definition
Language) and so it is language neutral. Fresco uses CORBA and supports
distributed graphical embedding. It supports structured graphics and
resolution independence. It supports X, Windows and Macintosh. Widget
implementations are exposed through kits which can allow a different look and
feel on each platform; however, only a Motif look and feel has been
implemented.

With Fresco it is very easy to extend widgets and write new ones. I wrote a
simple, yet flexible table widget in a couple of hours. It uses the concept of a
DAG (directed acyclic graph) of glyphs, which can be figures, layouts or widgets.
The DAG includes full 2-D transformation information, which makes for some
impressive demos. One example is a drawing editor that embeds a copy of
itself in the drawing, scaled and rotated, that is still fully functional. It is both
cool and powerful. For layouts it uses TeX's concept of boxes and glue, which is
also convenient and powerful.

However, I guess Fresco is one of those things that is almost too good to be
true. Originally a contender as a new X consortium standard, the companies
that sponsored the work have abandoned it, and commercial UNIX is going with
Motif instead. This places a lot of responsibility on anyone who decides to use
Fresco. If there is anything you need, you'll probably have to write it yourself.
The two biggest missing pieces are support for printing and for the system
clipboard/selection. Fresco needs more widgets, more polishing, and more
documentation, i.e., it needs more people working with it and on it.

I recommend looking at the design of Fresco even if you don't plan on using it.
Fresco may just be ahead of its time. Look for some of the concepts included in
Fresco to be hailed as brand new revolutionary technology in the next 10 years.

OpenStep/GNUstep

OpenStep is a GUI API (along with some non-GUI functions) originally based on
the NextStep system. GNUstep is a free implementation of OpenStep. It is a
work in progress and has not really reached a usable state yet.

The API seems above average. One nice feature is the use of the powerful
Display Postscript for screen drawing which makes printing close to trivial.

The biggest issue is that it uses Objective-C. I don't feel like learning one more
language, but after years of trying to find the best solution to the GUI toolkit
issue, I may. With the recent Apple-Next hype going on, OpenStep could get
enough momentum and hype behind it that using it for free software could pay

off. Apple has adopted OpenStep as the future direction for the MAC API, and
they will also provide an implementation for Windows. However, the future
success of Apple and OpenStep is unclear.

GNUStep is licensed under the LGPL so it can be used in both free and
commercial programs.

wxWindows

wxWindows was one of the first free C++ cross-platform GUI toolkits. It takes
the wrapper approach to providing cross-platform functionality, wrapping
either Motif or XView on X and Windows widgets on Windows. There is also a
partial port of an older version of wxWindows to Macintosh.

wxWindows has much practical functionality and lots of development activity,
but it suffers from the disadvantages of wrapping other widget libraries rather
than implementing its own. It's not as consistent and flexible as it could be.
Different platforms often have different functionality and different bugs, and
development between platforms is not always in sync; therefore, you have to
be careful that your program actually works on all platforms.

There are many extra high-level widgets written in wxWindows, such as tables
and HTML viewers. wxWindows also provides some higher-level architecture
functionality such as a Doc/View and Print Preview, although I have not
personally tested these.

If your program doesn't require more advanced interfaces than provided by the
common functionality of the simple native widgets across platforms,
wxWindows is a good, practical choice.

A new version of wxWindows in the works, version 2.0, will have some changes
in the API in an attempt to make it more functional. There is also a project to
make wxWindows wrap the GTK widget library, and a project to implement
generic widgets using wxWindows drawing calls. It is too early to predict how
these changes and additions will affect the future of wxWindows.

Tcl/Tk

Tcl/Tk is a popular solution for GUI programs on X, and it has been ported to
Windows and Macintosh. Tcl is a simple scripting language, and Tk is a widget
set that can be used with Tcl to create interfaces. I do not find the Tcl language
particularly appealing, and Tk is tied fairly closely to Tcl, although some effort is
being made to more cleanly separate the two. There are bindings for other
languages such as Scheme, Python and Perl. However, using Tk from C or C++ is
reportedly somewhat awkward. I have noticed that Tk applications tend to be

rather sluggish, but I don't know if this is because of Tcl or the Tk widgets
themselves.

One other disadvantage of Tk is that the look and feel (sort of like Motif) is the
same across all platforms, so the interface may look out of place to Windows
and Macintosh users, although I have heard attempts to remedy this are
underway.

Despite the disadvantages, Tk does have a lot of full featured widgets. I
understand it is possible to create interfaces relatively quickly. It is certainly
worth considering.

Java

A programming language and portable virtual machine and a collection of
libraries (called packages), these three technologies together are now
apparently called “Java”. Java has received a lot of hype in the past couple of
years. While the virtual machine and the rigidly specified language provide
some minor portability features, the most interesting part of Java to me is the
cross-platform GUI API. The original GUI API, known as the AWT, is a simple
wrapper library that has nothing in particular going for it. However, Sun is now
creating a new set of pure Java widgets, known as “Swing”, which seems to be
well designed and fully featured. With all the hype and momentum behind Java,
Swing has the potential to become one of the best GUI libraries available.

The disadvantage, of course, is that Swing (part of the JFC, Java Foundation
Classes) is about as far from language neutral as possible. If you want to use
Swing, you must take the Java language and the other Java libraries with it,
generally abandoning your perfectly good existing libraries.

My biggest complaint about Java is just that I feel like I'm not really developing
for Linux anymore; instead I'm developing for the “Java platform”. I get fatigued
wading through all the hype and nonsense that the trendiness of Java
engenders, and I miss the refreshing honesty of the Linux world. I'm also not
totally comfortable with the fact that Sun controls the direction of Java. If we in
the free software world don't like something about it, there's ultimately nothing
we can do, despite Sun's assurances of openness. There are free
implementations of the Java language and virtual machine, but at the rate Sun
is creating APIs, free implementations of the libraries trail far behind.

I would like to see the ability to use the high quality Java JFC library and still
integrate with the direction of the free software world. Perhaps some
cooperation with the GNOME project to allow Java applications using Swing to
comply with the GNOME application policies would be helpful. Then people
could write GNOME applications in Java, even if they used JFC instead of GTK.

Qt

Qt is a commercial C++ toolkit available for X and Windows. It is not free in the
monetary sense, costing about $2200 for both the X and Windows version.
There is a special exception: if you write a free program for X you can use it for
free. However, this free program is not really free in the GNU sense, or in the
Debian Free Software Guidelines sense, which causes many people (including
me) to be wary of basing projects on Qt.

Technically, Qt is reasonably well designed. Particularly notable is its flexible
“signals and slots” method of event handling. Qt is being used in the KDE
desktop project.

Win32

Win32 is the API for Windows NT and Windows 95. Because of its popularity, it
is also being used as a cross-platform API. Microsoft sells an expensive package
that will allow you to compile Win32 programs for Macintosh. There are also
expensive Win32 libraries available for various flavors of UNIX. The Wine
(windows emulator) project is attempting to create a free implementation of
Win32 on top of X, along with a binary emulator to run Windows executables
directly.

The problem with using Win32 for Wine is that Wine is not mature enough yet,
and because the API is controlled by Microsoft, the free implementation will
always lag behind Microsoft's own. Win32 is, obviously, a Windows-centric API,
and it is not a particularly good API, so the prospect of using it to develop Linux
GUI programs is not very exciting. However, if you already have a lot of Win32
code written, or are already very experienced with the API, it may be worth
considering investigating one of the implementations.

Motif

OSF/Motif is a set of commercial libraries and widgets built on top of X Toolkit
Intrinsics (Xt) which in turn is built on top of Xlib, the lowest layer of X. Motif, in
my opinion, is just adequate. Creating applications with Motif is tedious, and
from the user's point of view Motif is also just passable, nothing to get excited
about. Unfortunately, it is Motif, rather than something technically excellent like
Fresco, that the commercial UNIX vendors have declared the official UNIX GUI
standard (along with the Common Desktop Environment, CDE, which is built
upon Motif) under the auspices of the Open Group.

However, just being declared a standard doesn't make it so. Many people
dislike the mediocre quality of Motif and use other solutions for programming X
applications. And since Motif is not free, it is not very widespread among Linux

users. The vast majority of X applications included in Linux distributions do not
use Motif. So, regardless of the Open Group's decree, Motif cannot really be
considered the obvious native UNIX GUI library the way Win32 is for Windows
and QuickDraw and the Toolbox is for Macintosh. The best that can be said is
that most toolkits for X tend to provide a look that is somewhat similar to Motif.

Motif does have one advantage, though; it does provide the ability to create
much of what you will ever need in a GUI for your program, even if it takes a lot
of time and effort. Motif has much of the functionality of that last 10%, such as
full keyboard control, a resource system to customize widgets, support for
internationalized input methods and fonts and for threaded programs.

There is a free implementation of Motif available, called Lesstif, that is just
becoming usable for some applications. It still needs work to provide the
coverage that the latest version of Motif (2.1) has, however. There are
commercial versions of Motif for NT, although they are expensive, so it is
possible to use Motif in a cross-platform application. I believe Xlib and Xt have
already been ported to NT, and theoretically I suppose Lesstif could be ported,
which, again theoretically, could provide a free solution on NT.

GTK

GTK is the GIMP ToolKit (see LJ Issue 47), the widget library used in the free
image manipulation program the GIMP. (See LJ, Issues 43, 44, 45 and 46.) The
most interesting thing about it is that it seems to be gaining some momentum
in the Linux free software world, as more and more projects are using it.
Perhaps most notable is GNOME, a project to create a unified, consistent
graphical desktop environment built entirely on free software.

In the software world, momentum is often more important than technical
design, so GTK is worth investigating for that reason alone. Not that GTK is
technically bad. It is a fairly low-level toolkit, written in C, so it doesn't provide a
lot of high-level support. The attempt to use object-oriented design
implemented in C creates a lot of busy work in the code that is somewhat
distracting. However, because it is written in C, it can be used by almost any
language, and there are already bindings for C++, Guile, Scheme, Objective C,
Perl and probably others. This is no doubt one of the reasons for GTK's
popularity.

The design seems reasonable. It is not as flexible as Fresco, but at least it gets
some of the basics right, like having a button contain a widget rather than a
character string. It also provides layout using horizontal and vertical boxes,
which although I found the methods not as intuitive as the TeX inspired boxes
and glue of Fresco, they still provide a reasonably straightforward interface.

For handling events, GTK uses a system of signals and slots, like Qt. The C++
interface to GTK, known as GTK--, also provides a nice implementation of the
signal/slot methods using templates, an improvement over Qt's macros.

GTK is still immature. It lacks support for full keyboard control, a resource
system, unified printing interface and internationalized input and display. It
also is currently only for X. It is implemented on top of a low-level, thin wrapper
around some Xlib functions, called GDK. This may make porting to other
systems easier, although if the wrapper is so thin it requires Xlib semantics, it
may be harder. I include it here because ideally the best Linux GUI toolkit will
also be a cross-platform GUI toolkit. I hope that as GTK matures into a more
obvious choice for a Linux GUI toolkit it will also become a more obvious choice
for a cross-platform solution, and we won't have so much fragmentation and
duplication of effort.

In short, I have found no obvious winner among the various toolkits. I'm using
Java and the Swing package now, while investigating GTK and others in more
detail. Ah, yes, I am still dreaming that Fresco will rise again, Phoenix-like, from
the ashes.

Non-GUI Considerations

Resources

Michael Babcock has been using Linux since 1992. His programming interests
include multi-lingual software (especially Chinese and Japanese), parsing
techniques, graphics and anything that will help improve and promote Linux.
He enjoys playing basketball, playing the guitar and listening to The Fall. He
expects to graduate from the University of Montana in May 1998 with a
bachelor's degree in computer science. He can be reached via e-mail at
michael@kanji.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/049/2723s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/049/2723s2.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/049/toc049.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Rapid Prototyping with Tcl/Tk

Richard Schwaninger

Issue #49, May 1998

A discussion of rapid prototyping and how it can benefit programmers in
creating software to match the customer's needs.

Creating software is a complex process that embeds the programmer in rules
and constraints. Customer needs fight against bugs in the program, and
usability fights against production costs.

The current procedure to solve all these problems is object-oriented design and
analysis, accomplished by methodically trying to split a problem into suitably
small subdomains and providing a predefined path from analysis through
design to implementation and testing.

Such a procedure may help for large programs and may be necessary if many
programmers are involved. Most of the really good programs (such as those
available for Linux, and even Linux itself) are written by only a few people, and
more importantly, most of them don't start out knowing in which direction their
software will evolve. Therefore, another paradigm is needed—one that is better
suited to the needs of humans.

Here is a statement about rapid prototyping (RP) I found on the home page of
Cycad Corporation at http://www.cycad.com/:

Rapid prototyping is acquainted with keywords like “
Get to market faster, Beat the competition, Maximize
profitability, Increase quality...” Not only does rapid
prototyping provide all the benefits of getting to
market faster, but for the first time it is possible to
create Proof-of-Concepts to show customers before
implementation and create proto-production units
before committing to manufacturing. Both of these
validation steps can save extensive amounts of
resources and time.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

While all of the above is certainly true, RP is particularly suited to the creation of
software tailored to the customer's needs. One of the most important aspects
in determining these needs is to find out what the customer really wants.
Because the program takes its final shape while it is under development, not in
advance as would happen with standard structured design, the programmer
can respond to new information about customer needs. With RP this process is
straightforward and allowed, while normally it indicates an analysis or design
error in other methodologies.

Equally important is an easy way to test new ideas. The final product will be
better if you have some sort of playground to find out before implementation
whether or not your bright new concept is really as bright as you think. This is
even more important in our fast changing world where we have to react quickly
to new or changing demands.

Using rapid prototyping for software development does not necessarily depend
on a language specifically designed for it. It is possible to use compiled
languages like C/C++, but best results can be obtained with an easy to learn/
easy to use interpreted language. To get the most benefit, turnaround times
have to be short and modifications to existing code should be possible without
much effort.

One area where rapid prototyping really shines is user-interface design
(provided you have the right tools). You can create a dynamic visual model with
minimal effort and provide users with a physical representation of key parts
before system implementation. You can accommodate new or unexpected user
requirements earlier, and modifications are much easier.

Another aspect is quality assurance and control. The same tools used to build
the prototype can be adapted to build up a test harness that is useful up to the
final implementation of the system. This results in fewer changes after delivery
and therefore productivity improves.

Tcl/Tk

One of the current trends in computer languages is the use of portable
languages like Java, Perl or Tcl. While these are generally slower than a
compiled counterpart they offer a lot of advantages for the developer
(portability, simplicity, short turnaround times, etc.). If such a language can
integrate compiled code (e.g., by using shared libraries), a developer can first
concentrate on creating a working solution and later optimize the code at the
critical spots.

Tcl/Tk is especially well-suited to rapid prototyping, as it has solutions to all of
the requirements discussed above:

• It's simple to use and to learn.
• No compilation or development overhead is required—just write and run

your code.
• Graphical user interfaces can be built with very little effort.
• It can be used for testing (through the use of its introspection facilities).

I do not wish to begin a language war here—the above statements are my own
opinions. To make the best use of any language you need to know the language
very well (Tcl is no exception) and you need the corresponding tools (syntax
sensitive editor, debugger, performance analyzer, testing and documentation
tools). Finally, you need a lot of good libraries and extensions which give you
the power to create big applications with only a few lines of code.

An Example

The following example is meant to give you a feeling for what rapid prototyping
is like. To keep it short and understandable it does not use any of the features
of Tk at all. Although a graphical example would certainly be better suited to
show the advantages of RP, the concepts presented can easily be extended to
make use of Tk's extra features. It is one of my actual projects, and I will show it
to you in the same way I developed it. As you may guess the customer and the
programmer are in fact just one person—me.

Customer: “I need a nifty little library tool to work with values that are
configurable by the end user. The values should come from a simple text file,
and that's all there is to it.”

Programmer: “Okay. This one is really easy.”

I sit down and type some lines of Tcl code that give me the following interface:

proc Cfg <

This way I can use the configuration interface for a (hypothetical) text editor in
this manner:

set Lines [Cfg "NumLines"]

The format of the file should be kept simple, so I try the following to read
values from it:

NumLines 20
WordWrap 1

Reading the file into memory would need another function. As I don't want to
pollute name spaces (true for both Tcl and C), I modify the signature of my
procedure to be the following:

proc Cfg <

which gives me the following:
Cfg read "myconfig.cfg"
Cfg get NumLines

Code to implement all of this is written in 15 minutes. I add another 15 minutes
to write some test cases so I can always verify the correctness of the whole
implementation. Here is one test:

Test c1 "get simple value" {
 Cfg read "test.cfg"
 Cfg get NumLines
} 20

It reads my simple test configuration file and checks if the value for NumLines
is really the same as set in the configuration file. It is all finished in 30 minutes.
Sure, I have to rewrite it in C, but first I'll cross check with my customer.

Customer: “Nice work, but you see, if an application gets bigger, we may have
name clashes—consider two modules that use a configuration value named
Width. One could be the width of a window and the other the width of the text
in the editor. What we really need is a module dependent solution.”

Programmer: “Grrr. I should have known—simple things tend to get
complicated with time.”

Modifying the interface is straightforward, but what about the file format? Far
back in my mind is a little hint named win.ini. I cross check with a real windows
installation on my DOS partition—yes, the format would be just right for my
problem, and it will already be familiar to a lot of users.

So, I modify my configuration file to look like this:

; my config test file: 24/02/1997
[Editor]
WordWrap=1
NumLines=20
Width=80
[Window]
Width=320
Height=400
; EOF

Reading such a file is far more complicated than the simple approach taken
earlier. I pat myself on the shoulder that I have not yet written any C code.

Using some of the extra features of Tclx, an extension to Tcl, the file reader is
ready and working in half an hour.

Now, I modify the interface as follows:

Cfg read "myconfig.cfg"
Cfg get Editor NumLines
Cfg get Editor Width
Cfg get Window Width

and I modify all the test cases. Again, I present the whole thing to my customer.

Customer: “Yeah, that's just what I wanted. I have some real world examples,
could you verify that they work correctly?”

Programmer: The customer gives me some real X Window System
configuration files—did you think the above were real world examples?
Anyway, I run some tests on them and poof, all my nice looking code breaks. A
quick look at the files reveals the problems—backslashes, brackets, blanks and
entries that span multiple lines. Parsing an X configuration file is apparently
more complicated than I thought at first.

I add a lot of new test cases that show all the above failures. They help me to
make sure that I have a working piece of code at last, without one change
breaking something that worked previously.

Adapting the Tcl code is comparatively easy. It takes some time though, as I
have to fiddle around a bit with regular expressions for the parser. As soon as
all the tests complete without error, I show my work to the customer.

Customer: “While waiting, I have used your code in a real world program, and it
has one big drawback. Consider the following example configuration:

lpr -#1 -Plj5 myfile.txt

This is a print command which should be executed with exec. Some parts are
static but depend on the operating system (e.g., lpr versus lp), others (such as
the selection of the printer) may be done by the user and still others (such as
the file name) come directly from the program. What I need is a flexible
substitution scheme for configuration values.”

Programmer: “Ha. Now that's a really big request. How do I create such a
flexible substitution scheme?”

It takes me a day of thinking (actually this was handled by a background
process in my brain) to find the solution—Tk uses substitution for its key
binding mechanism, so why not use the same ideas here?

Again, I modify the interface, so it can process code such as the following:

Cfg get Printer Command\
 "%c=1" "%f=myfile.txt"

and I add some lines to my configuration file:

[Printer]
Command= lpr "#%c "Plj5 %f

Before returning the final value to the caller my routine substitutes all “%?”
sequences with the corresponding values from the argument list. Using Tcl's
regular expressions makes this quite simple, and the only thing that takes some
time is writing the tests to check for all these crazy conditions like “%%” and “\
%”.

The above example will return

lpr -#1 -Plj5 myfile.txt

just as expected by the customer.

Customer: “Great. This is what I have been looking for for years. There's just
one sub-optimal item left. If the user accidentally deletes his configuration file,
the program will no longer work. Isn't it possible to keep some default values
for this case?”

Programmer: “I have already thought of this situation. The code would be more
readable if an actual value were present, and it could be tested more easily as I
wouldn't have to write configuration files all the time.”

I modify the interface once more by adding a new subcommand:

Cfg def <module> <name> \
 <default> ?<sub>? ..."

The general syntax of the get and def sub-commands are the same (and both
return the same configuration value when called with the same substitution
values), but def also sets a default value when none is given.

If a configuration file has been read by Cfg, the values in this file take
precedence, otherwise the default is used.

Here is an example:

Cfg def Printer Command \
 "lpr -#%c -Plj5 %f" \
 "%c=1" \
 "%f=myfile.txt"

This command returns:

lpr -#1 -Plj5 myfile.txt

Customer: “I use your code in all of my Tcl applications, and it works like a
charm. The only thing I noticed is that the programs are really slow on startup. I
suspect this is related to your configuration code. Couldn't you do anything
about that?”

Programmer: “Aaargh.”

Back in the configuration business. First, I check some of the customers
applications. No wonder he has slow startup—he uses configurations quite
excessively, even for language internationalization. I instrument the
applications for profiling and create some snapshots for analysis. The resulting
diagrams (see Figure 1 and Figure 2) clearly state the two highest CPU-cycle-
eaters: reading configuration files and substitution of configuration values.

Figure 1. Tcl Profiler Bar Chart

Figure 2. Tcl Profiler Graph

The interface is comparatively stable now (the customer has already used it in
all his programs, he won't change it that easily). I start rewriting some of the
code in C. As I know the exact bottlenecks from the analysis, the first two C
routines replace the configuration reader and the substitution engine.

Now all of the previously written tests come in handy—I can check if the new
code works correctly with nearly no effort. Both of the routines are quite a bit
of work as they do some very tricky operations and pointers always point to
somewhere unexpected. Sure it's nice to have a debugger for Tcl (see Figure 3),
but without a C debugger, the life of a C programmer would be truly difficult.

Figure 3. Tcl Debugger

The new code is worth the price. Speed can be 5 to 10 times that of the original
code, and this can mean the difference between a one second startup and a
ten second startup.

There is a good deal more needed to make this little example into a full-fledged
library, but it should be enough to see the general concepts. Here are the most
important points to learn about the advantages of RP:

• Work can begin with incomplete specifications.
• Different implementations can be created in a straightforward and easy

way using Tcl, until the customer is satisfied.

https://secure2.linuxjournal.com/ljarchive/LJ/049/2172f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/049/2172f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/049/2172f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/049/2172f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/049/2172f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/049/2172f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/049/2172f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/049/2172f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/049/2172f3.jpg

• Working examples can be presented long before the application is
complete.

• If speed is a problem, the relevant parts can be rewritten in C.
• Quality increases with added test procedures.

I did a really big project that integrated CAD (computer aided drafting) and PPC
(production planning and control) software, and I successfully used the ideas
presented above. (See Figure 4 and Figure 5.) The project took more than a
year, and the specification changed more than once. The final solution shed
another light on the versatility of Tcl: the user is able to define his own
components (window frames, automatic actuators, etc.) using Tcl and its object-
oriented extensions. This feature was just an offspring of our rapid prototyping
philosophy as we simply provided the customer with our own tools.

Figure 4. PPC Software Screen

Figure 5. A Second PPC Software Screen

Using Tcl for software development is not the ultimate bells and whistles
solution. There are drawbacks such as the lack of real data types (anything is a
string), the inefficiency of interpreted code (although a compiler is now
available), and the fact that eval stays a mystery even to Tcl fanatics. Tcl shines
when your program is mainly centered on a graphical user interface. Other
tasks may be done better by Perl, C or even FORTRAN. As dynamically loaded,
shared libraries are now quite common on several platforms, we can split
problems into chunks and solve these chunks with the language that is most
appropriate for it. Tcl/Tk may be the glue for the graphical interface in this
scenario.

What is Tcl/Tk?

What is Rapid Prototyping?

Richard Schwaninger (risc@finwds01.tu-graz.ac.at) (risc@ping.at) creates
software for product automation systems. He uses Linux as his main
development platform and builds tools for Tcl/Tk. He has been in the software
business since the days of CP/M and has done a lot of late night hacking with

https://secure2.linuxjournal.com/ljarchive/LJ/049/2172f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/049/2172f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/049/2172f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/049/2172f5.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/049/2172f5.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/049/2172f5.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/049/2172s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/049/2172s2.html
mailto:risc@finwds01.tu-graz.ac.at
mailto:risc@ping.at

AutoCad Lisp. He is married and lives in Graz, the capital of Styria/Austria, and
he likes outdoor activities such as climbing, skiing and volleyball.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/049/toc049.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

CDE Plug-and-Play

George Kraft IV

Issue #49, May 1998

A major strength of the Common Desktop Evnironment is its programming
infrastructure, for example, ToolTalk. This article illustrates client and server
plug-and-play through the use of the Desktop's Application Programming
Interfaces (APIs).

ToolTalk, in the Common Desktop Environment (CDE), is a message brokering
system that enables applications to communicate with each other without
having direct knowledge of one another. Client and server applications can be
developed independently, mixed and matched, and upgraded separately
through plug-and-play. In addition, the Desktop Service can be called to
perform methods on file and buffer objects on behalf of ToolTalk.

Figure 1 shows the ToolTalk Service listening for TtChmod client requests.
ToolTalk Service brokers pattern-matched Chmod messages to the registered
mock change-mode application server (ttchmodd) that is waiting to handle the
incoming messages.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/049/2362f1.large.jpg

Figure 1.

ToolTalk brokers the requests from the client to the server application. The
Desktop Service can forward CDE object method invocations to the ToolTalk
Service. With the Desktop, both C programs and dtksh scripts can initiate
actions that are transmitted to the ToolTalk Service. Consequently, client
invocations from the dtaction command line, application manager icons, and
file manager icons can be directed through the Desktop Service to ToolTalk
application services. Therefore, double clicking on a file icon in the file manager
can be plugged into a ToolTalk registered application by first routing through
the Desktop action and data-type service.

Ptype

The key to the ToolTalk message brokering system is its ability to define
process-type identifiers with specific operations and arguments. In Listing 1, the
process-type (ptype) TtChmod will execute the ToolTalk change-mode daemon
application ttchmodd. This occurs when the session operation Chmod with file
name and mode arguments are matched from a request. Compiling the ptype
definition with the tt_type_comp utility will register services for ToolTalk client
applications to call. Consider the ptype as a C header file describing an
application programming interface (API) and the compiled suite of ToolTalk
Services definitions as a library of methods to call. For the list of installed
process-type identifiers, try running tt_type_comp -P at the command line to
dump the database to the screen.

https://secure2.linuxjournal.com/ljarchive/LJ/049/2362f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/049/2362f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/049/2362l1.html

Chmod Service

The file change-mode application (ttchmod) described in Listing 2 is simply the
Motif command widget. In Figure 2, the ttchmodd server application graphically
prompts the user for a command, then calls the callback command callCB to
execute it; however, for this example, the application just prints the command.
The file change-mode application quickly becomes a plug-and-play service
when it registers itself with the ToolTalk Service, then listens for messages to be
handled by its ToolTalkCB receiver routine.

Figure 2. ttchmodd

Register ToolTalk Service

An application must first locate the ToolTalk session associated with the X
display to register itself as a service, as shown in Listing 3. After the application
sets its default session to the display session, the application can initiate itself
as a ToolTalk process and obtain a ToolTalk file descriptor. When the ttchmodd
application gets a handle on the ToolTalk session, then it can register the
TtChmod process type and join the session to listen for requests.

Handle ToolTalk Requests

ToolTalk sends a message to a registered service; the service listens on its
ToolTalk file descriptor for input. When input is observed, the ToolTalkCB
routine is triggered, and the message is read and analyzed. (See Listing 4.) The
message's operation is checked, then the arguments are read from the
message. ToolTalk messages are similar to a reentrant version of an ordinary C
program's command-line arguments. The ttchmodd service is no longer
needed after it reads the message, so the recipient tells the ToolTalk service to
discard the message.

https://secure2.linuxjournal.com/ljarchive/LJ/049/2362l2.html
https://secure2.linuxjournal.com/ljarchive/LJ/049/2362l3.html
https://secure2.linuxjournal.com/ljarchive/LJ/049/2362l4.html

ToolTalk Client

The ttchmod ToolTalk client (see Listing 5) is much simpler than the ttchmodd
ToolTalk server. The client opens a ToolTalk process and locates the session.
The TtChmod process-type message request consists of the Chmod operation
with the file name and mode input arguments. It is sent to the ToolTalk Service
to be brokered to a registered server application accepting the ptype pattern.
However, note that this example omits error checking and garbage collection
with tt_mark and tt_release.

Desktop Action

The Desktop Action database in CDE describes methods and objects for
applications to act upon. CDE's Desktop Service can describe an action like
DtChmod, shown in Listing 6, that can be forwarded through the ToolTalk
Service to ttchmodd. If the action does not receive the appropriate arguments,
then the Desktop can prompt the user, as shown in Figure 3.

Figure 3. dtaction

The relationship of the Desktop Action definitions to CDE methods is similar to
the relationship of ptype definitions to ToolTalk processes. For an example of
Desktop actions and data types, run dttypes at the command line to dump the
database to the screen.

Desktop Service Client

The APIs of the Desktop Service can invoke actions registered in the Desktop
database either from a C program or from a dtksh script, as shown in Listing 7.
The dtchmod.ds dtksh script prompts the user, with the message dialogue, as
shown in Figure 4, to confirm with the user before requesting changes to the
file's mode.

https://secure2.linuxjournal.com/ljarchive/LJ/049/2362l5.html
https://secure2.linuxjournal.com/ljarchive/LJ/049/2362l6.html
https://secure2.linuxjournal.com/ljarchive/LJ/049/2362l7.html

Figure 4. dtchmod

In addition to calling Desktop actions from C programs and dtksh shell scripts,
users can initiate requests from the command line, as shown here:

dtaction DtChmod /etc/motd 644

If the appropriate arguments are given, then the action is forwarded to
ToolTalk; otherwise, the user is first queried, as shown in Figure 3.

Plug and Play

We have seen how the ttchmodd service registered with ToolTalk can receive
messages matching the TtChmod ptype pattern from ToolTalk clients, from
Desktop clients written in either C or dtksh, from the command line and from
double clicking on file object icons. These examples demonstrate how client
and server applications can be developed independently, mixed and matched,
and upgraded separately through plug-and-play. A ToolTalk-enabled
application service registered with its ptype definition can be developed
without specific knowledge of its counterpart.

CDE defines a message dictionary of desktop-specific ToolTalk process types,
operations and arguments as seen from viewing the database. Others, such as
Computer-Aided Design (CAD) and Electronic Design Automation (EDA) services
have developed supplemental dictionaries. You can use existing ptypes or
define your own, but the important point to know is how to register the
process-type identifier, operation and arguments.

Resources

George Kraft is an Advisory Software Engineer for IBM's Network Computer
Division. He has previously worked on CDE V2.1 and V1.0 for IBM's RS/6000
Division and on X and Motif for Texas Instruments' Computer Systems Division.
He has a BS in Computer Science and Mathematics from Purdue University. He
can be reached via e-mail at gk4@austin.ibm.com.

Archive Index Issue Table of Contents

https://secure2.linuxjournal.com/ljarchive/LJ/049/2362s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/049/toc049.html

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

The Python DB-API

Andrew M. Kuchling

Issue #49, May 1998

A Python SIG has put together a DB-API standard; Mr. Kuchling gives us the
details.

Many people use Python because, like other scripting languages, it is a
portable, platform-independent and general-purpose language that can
perform the same tasks as the database-centric, proprietary 4GL tools supplied
by database vendors. Like 4GL tools, Python lets you write programs that
access, display and update the information in the database with minimal effort.
Unlike many 4GLs, Python also gives you a variety of other capabilities, such as
parsing HTML, making socket connections and encrypting data.

Possible applications for the Python DB-API include:

• Many web sites construct pages on the fly to display information
requested by the user, such as selections from the products offered in a
catalog or from the documents available in a library. Doing this requires
CGI scripts that can extract the desired information from a database and
render it as HTML.

• An Intranet application might use the Tkinter module and the DB-API to
provide a graphical user interface for browsing through a local database,
such as accounts receivable or a customer list.

• Python programs can be used to analyze data by computing statistical
properties of the data.

• Python programs can form a testing framework for programs that modify
the database, in order to verify that a particular integrity constraint is
maintained.

There are lots of commercial and freeware databases available, and most of
them provide Structured Query Language (SQL) for retrieving and adding
information (see Resources). However, while most databases have SQL in

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

common, the details of how to perform an SQL operation vary. The individuals
who wrote the Python database modules invented their own interfaces, and
the resulting proliferation of different Python modules caused problems: no
two of them were exactly alike, so if you decided to switch to a new database
product, you had to rewrite all the code that retrieved and inserted data.

To solve the problem, a Special Interest Group (SIG) for databases was formed.
People interested in using Python for a given application form a SIG of their
own: they meet on an Internet mailing list, where they discuss the topic,
exchange ideas, write code (and debug it) and eventually produce a finished
product. (Sounds a lot like the development process for the Linux kernel,
doesn't it?)

After some discussion, the Database SIG produced a specification for a
consistent interface to relational databases—the DB-API. Thanks to this
specification, there's only one interface to learn. Porting code to a different
database product is much simpler, often requiring the change of only a few
lines.

The database modules written before the Database SIG are still around and
don't match the specification—the mSQL module is the most commonly used
one. These modules will eventually be rewritten to comply with the DB-API; it's
just a matter of the maintainers finding the time to do it.

Relational Databases

A relational database is made up of one or more tables. Each table is divided
into columns and rows. A column contains items of a similar type, such as
customer IDs or prices, and a row contains a single data item, with a value for
each column. A single row is also called a tuple or a relation, which is where the
term “relational database” originates.

For an example database, we'll use a small table designed to track the
attendees for a series of seminars. (See Listing 1.) The Seminars table lists the
seminars being offered; an example row is (1, Python Programming, 200, 15).
Each row contains a unique identifying ID number (1, in this case), the seminar's
title (Python Programming), its cost ($200), and the number of places still open
(15). The Attendees table lists the name of each attendee, the seminar that he
or she wishes to attend and whether the fee has been paid. If someone wants
to attend more than one seminar, there will be more than one row with that
person's name, with each row having a different seminar number and payment
status.

The examples below use the soliddb module, which supports accessing SOLID
databases from Python. SOLID is a product from Solidtech that was reviewed

https://secure2.linuxjournal.com/ljarchive/LJ/049/2605l1.html

by Bradley Willson in LJ, September, 1997. I'm not trying to cover CGI or Tkinter
programming, so only the commands to access the database are presented
here, in the same manner as if typed directly into the Python interpreter.

Getting Started

To begin, the program must first import the appropriate Python module for
connecting to the database product being used. By convention, all database
modules compliant with the Python DB-API have names that end in “db”, e.g.,
soliddb and oracledb.

The next step is to create an object that represents a database connection. The
object has the same name as the module. The information required to open a
connection, and its format, varies for different databases. Usually, it includes a
user name and password, and some indication of how to find the database
server, such as a TCP/IP hostname. If you're using the free trial version of
SOLID, UNIX pipes are the only method available to connect to the server, so
the code is:

>>> import soliddb
>>> db = soliddb.soliddb('UPipe SOLID',
 'amk', 'mypassword')
>>> db
<Solid object at 809bf10>

Cursor Objects

Next, you should create a cursor object. A cursor object acts as a handle for a
given SQL query; it allows retrieval of one or more rows of the result, until all
the matching rows have been processed. For simple applications that do not
need more than one query at a time, it's not necessary to use a cursor object
because database objects support all the same methods as cursor objects.
We'll deliberately use cursor objects in the following example. (For more on
beginning SQL, see At the Forge by Reuven Lerner in LJ, October, 1997.)

Cursor objects provide an execute() statement that accepts a string containing
an SQL statement to be performed. This, in turn causes the database server to
create a set of rows that match the query.

The results are retrieved by calling a method whose name begins with fetch,
which returns one or more matching rows or “None” if there are no more rows
to retrieve. The fetchone() method always returns a single row, while
fetchmany() returns a small number of rows and fetchall() returns all the rows
that match.

For example, to list all the seminars being offered, do the following:

>>> cursor = db.cursor()
>>> # List all the seminars
>>> cursor.execute('select * from Seminars')
>>> cursor.fetchall(
[(4, 'Web Commerce', 300.0, 26),
 (1, 'Python Programming', 200.0, 15),
 (3, 'Socket Programming', 475.0, 7),
 (2, 'Intro to Linux', 100.0, 32),
]

A row is represented as a tuple, so the first row returned is:

(4, 'Web Commerce', 300.0, 26)

Notice that the rows aren't returned in sorted order; to do that, the query has
to be slightly different (just add order by ID). Because they return multiple rows,
the fetchmany() and fetchall() methods return a list of tuples. It's also possible
to manually iterate through the results using the fetchone() method and
looping until it returns “None”, as in this example which lists all the attendees
for seminar 1:

>>> cursor.execute (
 'select * from Attendees where seminar=1')
>>> while (1):
... attendee = cursor.fetchone()
... if attendee == None: break
... print attendee
...
('Albert', 1, 'no')
('Beth', 1, 'yes')
('Elaine', 1, 'yes')

SQL also lets you write queries that operate on multiple tables, as in this query,
which lists the seminars that Albert will be attending:

>>> cursor.execute("""select Seminars.title
... from Seminars, Attendees
... where Attendees.name = 'Albert'
... and Seminars.ID = Attendees.seminar""")
>>≫ cursor.fetchall()
[('Python Programming',), ('Web Commerce',)]

Now that we can get information out of the database, it's time to start
modifying it by adding new information. Changes are made by using the SQL
insert and update statements. Just like queries, the SQL statement is passed to
the execute() method of a cursor object.

Transactions

Before showing how to add information, there's one subtlety to be noted that
occurs when a task requires several different SQL commands to complete.
Consider adding an attendee to a given seminar. This requires two steps. In one
step, a row must be added to the Attendees table giving the person's name, the
ID of the seminar they'll be attending and whether or not they've paid. In the
other step, the places_left value for this seminar should be decreased by one,
because there's room for one less person. SQL has no way to combine two
commands, so this requires two execute() calls. But what if something happens

and the second command isn't executed—perhaps, because the computer
crashed, the network died or there was a typo in the Python program? The
database is now inconsistent: an attendee has been added, but the places_left

column for that seminar is now wrong.

Most databases offer transactions as a solution for this problem. A transaction
is a group of commands: either all of them are executed, or none of them are.
Programs can issue several SQL commands as part of a transaction and then
commit them, (i.e., tell the database to apply all these changes simultaneously).
Alternatively, the program can decide that something's wrong and roll back the
transaction without making the changes.

For databases that support transactions, the Python interface silently starts a
transaction when the cursor is created. The commit() method commits the
updates made using that cursor, and the rollback() method discards them. Each
method then starts a new transaction. Some databases don't have
transactions, but simply apply all changes as they're executed. On these
databases, commit() does nothing, but you should still call it in order to be
compatible with those databases that do support transactions.

Listing 2 is a Python function that tries to get all this right by committing the
transaction once both operations have been performed. Calling this function is
simple:

addAttendee('George', 4, 'yes')

We can verify that the change was performed by checking the listing for
seminar #4, and listing its attendees. This produces the following output:

Seminars:
4 'Web Commerce' 300.0 25
Attendees:
Albert 4 no
Dale 4 yes
Felix 4 no
George 4 yes

Note that this function is still buggy if more than one process or thread tries to
execute it at the same time. Database programming can be potentially quite
complex.

With this standardized interface, it's not difficult to write all kinds of Python
programs that act as easy-to-use front ends to a database.

Resources

Andrew Kuchling works as a web site developer for Magnet Interactive in
Washington, D.C. One of his past projects was a sizable commercial site that

https://secure2.linuxjournal.com/ljarchive/LJ/049/2605l2.html
https://secure2.linuxjournal.com/ljarchive/LJ/049/2605s1.html

was implemented using Python on top of an Illustra database. He can be
reached via e-mail at akuchling@acm.org.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/049/toc049.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Toward Greater Portability: A Quixotic View

Ph.D.. Graydon Ekdahl,

Issue #49, May 1998

A fun way to look at the issue of the development of a universal GUI.

Don Quixote: Ahhh, Sancho, think of it! A single GUI interface that would allow
me to write my application once and then run it on Windows, OS2 Warp and
Linux boxes without changing one line! Maybe even on Alpha and Sun boxes
too.

Sancho: But Master, no one can agree on anything. Especially the big
embarcaderos. And if they did agree on something like that, it would only be
after a hundred years. Or maybe longer. Then I sleep in the earth. May I rest in
peace.

[Sancho sometimes transmogrifies vocables when he
speaks. It is not clear exactly what he means by
“embarcaderos”. The meaning probably lies
somewhere within the semantic turf demarcated by
the concepts “entrepreneurs”, “big guys in business”,
“movers and shakers”, or the concept of your choice
that denotes mercantile power, grandeur and a touch
of narcissism.]

Don Quixote: Have you forgotten the great examples of cooperation? The ones
that made computing easier? What about the LIM memory specification? Three
giants—your embarcaderos—created one method of accessing memory above
one megabyte so that programs could be bigger, faster.

Sancho: Careful, Master. One of the last giants was a windmill.

Don Quixote: Sancho, it was a giant. And remember: I am your master.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Sancho: But Master, just one example. Once is an exception. Proves nada!
Twice is a coincidence. Also proves nada. Three times is a pattern. Give a
second example!

Don Quixote: You doubter! You miss the best in life because you look down, not
up. You overlook great things to discover only the pebbles in your own shoes.

Sancho: Please, Master, the example. A poor man like me does not go far on
words and ideas. Please, something concrete!

Don Quixote: Sancho, Sancho! What about STL, the standard template library?
Now we all have containers that can be used with almost any ANSI compiler!
We cooperated on that! What about the committee that drafted standards for
C++? Knights from all over the industry came together. These are great
achievements.

Sancho: All right, Master! STL and ANSI standards are both C++. You get credit
for one example only. Nothing more. That's number two. So now you have a
coincidence.

Don Quixote: Have I made my point?

Sancho: No!! You give three good examples, or I believe in nothing! Nada! Nada!

Don Quixote: Sancho, Sancho, so pedestrian, so little imagination. I fear for
your salvation.

Sancho: Master, the example, please!

Don Quixote: Think of Java. Here we have something like the ideal I am thinking
of. We write once, we run many. Why? Java is interpreted code. And the
interpreter is written for the platform. The application is written for the
interpreter. So we run on all platforms.

Sancho: Oh, Master! If Java is interpreted, Java is slower! Slower is not good.
Faster is good.

Don Quixote: Exactly! For once you have something right. We need
performance and portability.

Sancho: But Master! Where is the cooperation? Sun Microsystems created Java.

Don Quixote: You miss the point. Sun did cooperate. They licensed Java to
anyone who agreed not to provincialize the language by creating non-portable,

local extensions. Most people respected this agreement. Java was not theirs to
take over anyway. So Java is portable, mainly.

Sancho: Master, Master! What is this ahead?

[Sancho and Don Quixote have just reached the crest
of a hill, and looking down the other side, they spy a
bridge over a small brook. Next to it stands a sign:
“Bridge to Cross”. Just as they approach the crossing, a
Proprietary Troll jumps up from below the bridge onto
the road, barring their way.]

Proprietary Troll: I control this bridge, and you must pay toll, or you may not
cross.

Don Quixote: Sir, I am a Knight, champion of Dulcinea del Toboso and future
keeper of the universal GUI interface. Let us pass, sir!

Proprietary Troll: I control this bridge, and you must pay toll. Heed my words, or
you will fare badly.

Don Quixote: Indeed! What will I lose?

Proprietary Troll: Market Share, my Knight, market share!

Don Quixote: [suddenly thoughtful] I see. And what toll do you desire?

Proprietary Troll: Control!

Don Quixote: Of what? You mean the GUI interface? You want to control that
too?

Proprietary Troll: That most of all. That is your toll. Give it up, turn it over to me,
or you will not pass. I control the bridge, I control the interface and I control
you.

Don Quixote: Not so fast, you runt!

Sancho: Master, Master! You forget yourself!

Don Quixote: You forget your bridge is just one miserable, narrow crossing,
that your brook is just a tributary of one great, massive stream whose power
sweeps us all along, that you can simply be washed away if you fail to meet the
needs of travelers who come this way. You overreach yourself! Say, aren't you a
little far from Scandinavia?

Proprietary Troll: [puffing himself up and then expelling a lot of hot air] Try to
cross without my help. Lose market share. We will see who is swept away!

Don Quixote: Canis culum in tuo naso! We will find another bridge and cross
elsewhere. We do not need you to provide a crossing. If need be, we build a
bridge of our own.

[“Canis culum in tuo naso” is a Latin curse which first
occurs in writing in the Old High German period (ca.
850-1050) in a phrase book for travelers which gives
Latin phrases and their German equivalents. The Old
High German equivalent is: “hundes ars in dine nas”.]

Sancho: [to himself] Such nonsense! For windmills he sees giants. Trolls bigger
than life. Oh, Lord, give me something small again, a pebble for my shoe!

Don Quixote: Sancho, forget your pebbles! Let us hie ourselves hence and find
another crossing.

[Sancho and the Don turn about to find a crossing on
another tributary of the great stream. Their thoughts
return to the interface.]

Sancho: OK, you gave three examples. Tell me more about your universal gooey
face.

Don Quixote: [grimaces at Sancho] Sancho, if I am no longer your master, how
will you fill your belly? I said Universal GUI interface, not gooey face. Sometimes
I don't think you take me seriously.

Sancho: Sorry, Master! Tell me more about your gooey inter...face.

Don Quixote: That's better. First, the universal GUI interface should be a
standard that remains the same from platform to platform just like STL or ANSI
C++. The details of the implementation should be hidden from the client
because they're platform dependent. This interface means that ideally
programs can run on multiple platforms without change.

Sancho: What is the gooey interface supposed to do?

Don Quixote: That's easy. The interface should provide a complete set of tools
which perform routine window management tasks and offer all the
functionality of the provincial GUI interfaces already in place. These tools
should be general enough to be very flexible but powerful enough to compete
head-on with the provincial GUI interfaces out there and provide programmers
with a serious opportunity to write portable code.

Sancho: Great. But what language will you write this in? Spanish? Portuguese?

Don Quixote: C++ of course! It is object-oriented, supports inheritance, and the
details of the implementation can easily be hidden from clients. It is also fast
and allows access to the hardware.

Sancho: Can you be more specific? What procedures will your universal gooey
interface include to manage a window?

Don Quixote: The details are best left to the Knights who convene to create the
interface. All they need to do is decide what functionality the interface should
include and then examine the provincial interfaces already in place to see if
implementing that functionality is practical.

Sancho: Has anyone ever tried to write a universal gooey interface?

Don Quixote: Not that I know of. [Suddenly the Don is full of himself.] But there
is rustling in the woods, voices from under the earth, whisperings in the breeze.
A new age may be at hand. [The Don thumps his chest triumphantly as though
the battle were already won.]

Sancho: [To himself] What nonsense! [To the Don] What do you mean? Your
words are confused....uhhh...excuse, Sire, I mean confusing. Can you give an
example?

Don Quixote: No one has tried to write what I speak of exactly but there are
movements in that direction. The X Window System has been ported from
Linux to OS/2 so that an OS/2 machine can be hooked to a Linux network and
run its software. Also, a Windows emulator is being developed for Linux so that
Windows applications will run inside Linux even though Linux is not a genuine
Windows platform. Finally, programmers in Allemagne have created a conio.h
and conio.c implementation that mimics the conio.h and conio.c files in Borland
and Watcom C so that PC-DOS programs port more easily to Linux. And there is
a PC-DOS emulator for Linux too. These achievements all attempt to allow
someone to run a program on a platform it was not written for without
changing code, and their common goal is portability.

Sancho: Do you think the knights will be able to do such a thing as the gooey
face at all?

Don Quixote: I don't know, but I hope so.

Sancho: What stops them?

Don Quixote: Just a little cooperation.

Graydon Ekdahl is president of Econometrics, Inc. located in Chapel Hill, North
Carolina. Graydon enjoys creating database applications and is interested in
data structures, algorithms, C++ and Java. He can be reached at
gekdahl@ibm.net.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/049/toc049.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

The Yard Relational Database System

Fred Butzen

Issue #49, May 1998

Yard is an RDBMS package that is published by Yard GmbH of Cologne,
Germany.

• Manufacturer: Yard GmbH
• E-mail: yard@yard.de
• URL: http://www.yard.de/
• Price: $490 US (5 user license)
• Reviewer: Fred Butzen

I am a relative newcomer to Linux, having used it for about three years. In that
time, I have been impressed by the creativeness of the Linux community, and
its dedication to Linux.

Having caught the fever myself, I find myself telling my acquaintances in
business about Linux and what it can do for them. Some are willing to listen
and will use Linux for some narrowly defined tasks, such as a firewall. Most,
however, are reluctant to use Linux as a part of their core operation. This is due
in part to a reluctance to entrust their businesses to a free operating system
—“free” somehow implying cheap or inferior. But a large part of the reluctance,
I've found, is due to a seeming lack of applications that run under Linux.

In particular, the fact that none of the “big three” relational database packages
are available in Linux editions is a serious problem for many business people.
As businesses come to depend upon relational databases for managing their
day-to-day operation, having a robust relational database management system
(RDBMS) available is crucial to selling an operating system to business people.

Fortunately, a solution to this problem exists if one is willing to consider
software written somewhere other than northern California. Many companies
in Canada and Europe now offer their products with Linux support, and some

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

of those products offer much of the functionality of better known products at a
fraction of the price. One such product is the Yard RDBMS.

What Is Yard?

Yard is an RDBMS package that is published by Yard GmbH of Cologne,
Germany. The Yard package includes the following:

• SQL engine
• Utilities for monitoring and managing the engine
• ODBC drivers and libraries for Windows 3.1, Windows 95 and Windows NT
• JDBC driver
• ESQL-C library: with this package, you can write C programs that have SQL

statements embedded within them.
• X Window System-based tool for interrogating the database: this tool uses

a point-and-click method for interacting with a database. With it, a user
who has no knowledge of SQL can build queries and interrogate the
database.

• Tools for building a CGI interface to a database

Implementation

Yard is a fully featured RDBMS. Its SQL engine includes the following features:

• Full implementation of the SQL-2 standard
• Stored procedures, implemented using the stored-procedure language

described in the draft SQL-3 standard of August 1994
• Triggers, implemented as described in the draft SQL-3 standard
• Advanced data types, including VARCHAR, TEXT and BLOB (binary large

object)
• A rich set of functions, including mathematical functions, date functions,

string-manipulation functions and user-customized functions
• Methods for enforcing domain integrity and referential integrity
• Support for locale-specific data, including the use of national character

sets for sorting, display of date and time and display of money
• Physical and logical logging

Yard uses a standard client/server interface: the SQL engine services requests
from client processes that are running either locally or on networked systems.
Local requests are received via pipes; network requests are received via
sockets. Client processes can use a number of protocols to exchange data with
the engine: ODBC, JDBC, ESQL-C, etc.

Resource Management

When you install Yard, you must define one or more database systems (DBS).
Each DBS has its own shared-memory segment that is used by every user who
is working with that DBS, and one or more database spaces, each of which is a
chunk of disk that holds data. Yard's method of managing system resources
closely resembles that of major commercial relational database packages; if
you are familiar with Informix OnLine, you will feel at home working with Yard.

Each of Yard's database spaces is a statically allocated portion of disk. Usually, a
database space is a part of a raw disk partition—one that does not have a file
system on it. A database space can also be a file, although this is discouraged.

The system administrator must use a fairly complex formula to compute just
how much disk space to allocate to a given database space. This formula
includes the number and size of the physical and logical logs, the number of
users, the number of tables and the estimated extent of each table.

The administrator can dictate the database space used by individual tables
within a database. By estimating the frequency with which individual tables will
have to be accessed, the administrator can balance disk I/O across all of the
devices that hold a given database and thus ensure transactions are processed
as quickly as possible.

As you can see, Yard is a serious package. To see it at its best requires serious
hardware—preferably a machine with lots of memory, cycles to burn and
multiple SCSI disks. It also requires an administrator who knows databases,
UNIX and hardware and who can devote a significant portion of her time to
monitoring and managing the database.

Versions

To use Yard, you must purchase a license for the SQL engine, plus licenses for
one or more ancillary systems (ODBC, ESQL-C, YARD-X or JDBC).

Yard costs a fraction of what you would pay Oracle or Informix for a package
with similar functionality. An SQL license for five users costs 990DM (not
including value-added tax)—or about $490 US. (The actual cost will depend
upon the rate of exchange between the Deutschmark and the US dollar, which
fluctuates.) The other tools are similarly priced.

Unlike Oracle, which utilizes “named users” (that is, only a defined set of
individuals can use the package), Yard defines a “user” as someone who is
interacting with the engine. Thus, a five-user license can actually serve more

than five users—a fact that is particularly important if your users work only
intermittently with the database.

A free personal edition of Yard is available for download from Yard's web site
(http://www.yard.de/). This package supports a single user and limits the size of
the database. An ODBC driver is also available for the private edition. If you are
interested in Yard, the private edition is an excellent way to become familiar
with it.

Documentation

Documentation comes in the form of HTML files. Some sub-systems also have
PostScript versions available; in particular, these are available for the ESQL-C
library.

Documentation is available in German and English. I do not speak German but I
found the English documentation to be well-organized and complete and its
English to be both correct and lucid. My only complaint is that the HTML
version tends to put each sub-section into its own file, making it difficult to print
a copy to read while you're away from your computer.

The documentation assumes that you know SQL and are thoroughly familiar
with Linux. Again, Yard is not a package for beginners.

Installation

Installation of Yard is driven by a shell script and runs smoothly. The script
requests a location for installing the binaries, requests license numbers and
keys, then copies the bits appropriately. A complete installation of the engine,
libraries, header files and configuration files takes less than 11 megabytes.

Installation, unfortunately, is hampered by minimal documentation. The only
documentation you receive are two lines of instruction, printed on the CD-ROM
case, telling you to mount the CD-ROM and invoke the installation script.
Thereafter, you're on your own. If something goes wrong, your only recourse is
to read the shell script and interpret what it was doing when it failed.

Thanks to this flaw, installation is practically guaranteed to fail at some point, at
least on your first try. For example, nowhere does the Yard package indicate
that the binaries must be owned by a user and group named yard—your first
hint of this requirement is the obscure error message you see when the script
fails.

This may be splitting hairs, but it is a pain to diagnose and fix problems that
could easily have been avoided had the publisher included a page of
instructions in a README file.

Conclusion

Yard is a fully implemented, enterprise-scale database-management package.
With it, you can process transactions for a small- to medium-sized business or
not-for-profit enterprise. It offers most of the features of Oracle or Informix,
but at a fraction of the cost.

Since it is an enterprise-scale RDBMS, Yard may be too much database for
some users. If you are looking for a tool with which you can learn SQL or if you
wish to set up a small database for your church or fantasy-baseball league, you
probably would be better off with a more modest commercial package, such as
JustLogic, or with one of the free databases, such as PostgreSQL or msql.

However, if you are a contractor who specializes in Linux-based solutions or a
business person who is considering using Linux as the backbone of your
enterprise's information system, you will find that Yard is serious software
worth serious consideration.

Fred Butzen is a technical writer and programmer who lives in Chicago. He is
principal author of the manual for the Coherent Operating System, and is co-
author of The Linux Database (MIS:Press, 1997) and The Linux Network
(MIS:Press, 1998). He can be reached via e-mail at fred@lepanto.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/049/toc049.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

A Practical Guide to Linux

Todd Sundsted

Issue #49, May 1998

This book is written for the “next” generation of Linux users—programmers,
web designers and technically oriented people who are looking for an
alternative to Microsoft's operating system and products—rather than the
“hacker” generation (who brought Linux to this point).

• Author: Mark Sobell
• Publisher: Addison Wesley Longman
• E-mail: info@awl.com
• URL: http://www.awl.com/
• Price: $38 US
• ISBN: 0-201-89549-8
• Reviewer: Todd Sundsted

Mark Sobell's A Practical Guide to Linux is one of a growing number of books
on the Linux operating system. It combines about equal parts topical guide and
command reference. It is written for the “next” generation of Linux users—
programmers, web designers and technically oriented people who are looking
for an alternative to Microsoft's operating system and products—rather than
the “hacker” generation (who brought Linux to this point).

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

The Linux universe is expanding at an ever increasing rate. Consequently,
books of this type are faced with the challenge of being simultaneously
comprehensive, relevant and up to date. To this book we must add a fourth
challenge—as the title suggests, the material in the book must be practical. Of
the three (or four), being comprehensive is perhaps the easiest to achieve.

Let's look briefly at what Mark Sobell offers us. Part I is organized into chapters,
each covering a separate topic.

After a brief introduction to Linux and its features in chapter one, Mark
immediately gets down to the business of using Linux in chapter two. In it, he
teaches the reader how to log in, edit files, access the on-line manual pages and
use the command line. It is pretty basic stuff that is necessary for the complete
beginner.

In chapter three, Mark teaches the reader how to use the most common
command-line utilities—tools like cp, mv and grep. Chapter three ends with a
useful section on locating other users, communicating with them, and sending
electronic mail.

Chapter four introduces the Linux file system. It describes the tree-like
organization of the Linux file system, introduces files and directories, and
describes how to work with them.

Chapter five introduces the command-line shell and related topics including
input and output redirection, pipes and the file name wild card characters “?”
and “*”. The material in this chapter is not specific to any of the common
command-line shells, but instead introduces the features common to all of
them.

Most users expect computers to have a graphical user interface (GUI).
Therefore, the sixth chapter introduces the X Window System—the most
common windowing system available to Linux users. Chapter six contains an
introduction to the X Window System and its user interface components—
buttons, sliders, and kin—and the mouse. It also describes briefly two of the
most popular window managers available for X—MWM (Motif Window
Manager) and FVWM (Feeble Virtual Window Manager) and provides
information on customizing each.

In the seventh chapter, Mark introduces two very important topics—networking
and the Internet. He describes the different network types and the various
network utilities typically found on a machine running Linux. He also explains
how to access both Usenet newsgroups and the World Wide Web.

Chapters eight and nine introduce the ubiquitous vi text editor and the Emacs
text editor, respectively. While not the WYSIWYG writing tools many new users
of Linux expect, they are inarguably an essential part of the repertoire of
programmers, system administrators, web developers and others. The chapter
on the vi editor is quite complete. The chapter on Emacs contains just enough
material to get you going, but nowhere near enough to make you a master of
this complex but powerful tool. No manual entry for p Chapter eleven
introduces the topic of shell programming (or writing shell scripts).

In chapter fourteen, Mark introduces the tools of the programmer's trade—the
C compiler, make and the source code management utilities. This chapter is
easy to read but the material is not really necessary. Readers with any
programming experience at all will find it far too basic, and beginners won't
find enough information to make them into even fledgling programmers.

The final chapter of part one, chapter fifteen, introduces system administration.
In this chapter the reader is taught how to boot the Linux system, backup files,
install software, and rebuild the kernel.

Part II is a command reference that is quite well done. Each entry in the
reference describes the syntax of a command, summarizes its operation,
describes its arguments and options, provides a few noteworthy comments
and illustrates several examples of its use. While there is nothing here that
couldn't be obtained from a careful reading of the man pages for each
command, the format is easier to read and the examples are far more useful.
Occasionally an entry omits some of the less used features of a command. In
those cases you'll have to refer to the man pages for the command or to other
documentation.

Four appendices round out the book—one on regular expressions, one on
accessing the copious Linux documentation available on-line (appropriately
titled “Help!”), one on software emulators and one on POSIX and POSIX
compliance.

My overall impression of Mark Sobell's book was positive. The chapters on the
various command line shells easily took top honors for best of the book. Like it
or not, the command line is an integral part of using Linux, and familiarity with
one of the available shells is necessary to fully utilize its power. Users new to
the Linux world will undoubtedly be daunted by the flexibility offered by the
even the simplest shells—especially if their previous experience was limited
solely to the DOS shell. A good introduction, however, goes a long way toward
making the process of learning painless, and once learned, the user will find the
flexibility and power exciting.

The chapter on vi was very solid. I only use vi when I don't feel like waiting for
Emacs to start—that turns out to be quite often when I'm performing system
administration tasks. Consequently, I use vi a lot more than I ever thought I
would. I have a feeling that vi is here to stay and that learning to use it
effectively is best done early.

The chapter on networking was a mixed bag. The information on networks and
networking was interesting, as was the overview of NFS and NIS. The coverage
of common commands such as rlogin, ftp and ping was also very useful. On the
other hand, I don't think anyone uses archie or gopher anymore. (It did dredge
up nearly lost memories of a much smaller Internet, however.) In fact, I'd bet
many people haven't even heard of them. The material on browsing the World
Wide Web, while accurate, is already beginning to go out of date. The material
in the book is based around what looks like Netscape 3.x and Netscape 4.0 is
already out, with a completely new user interface. Omitted is any mention of
Java or Javascript.

I liked the command reference in part II of the book. While not a replacement
for the on-line manual pages, it was fun to flip through off-line. The on-line
manual pages are great when you know what you're looking for, but they're not
much fun to browse. Part II, on the other hand, made good reading while
waiting for a compile to finish or a page to load into my browser.

The least useful chapter, in my opinion, was chapter fourteen—Programming
Tools. The material presented seems too basic for an experienced
programmer, yet too superficial for a beginner. But then, as I think more about
it, one group does come to mind—those programmers who are proficient in C
or C++ but who have gained all of that experience while working in an
Integrated Development Environment (IDE) on another operating system.
Compiling and building an application from a command-line environment
would be a big change. Chapter fourteen would help them get started.

I found the sections on customizing FVWM and MWM, in chapter six, to be too
brief. I'm also concerned that, given the existence of two mutually incompatible
(from a configuration file perspective anyway) but common versions of FVWM
(1.x, 2.x and 95), the section on FVWM configuration might cause more harm
than good for beginners. Perhaps Mark could have mentioned configuration,
explained what pieces of each window manager can be configured, pointed the
reader in the direction of the manual page and moved on.

I also found the inclusion of material on the various emulators to be of little
use. While I consider both Wine and Executor to be two of the most impressive
products I have ever seen, given their current (sometimes extreme) limitations
they are unlikely to be useful to any more than a small minority of Linux users.

WABI and iBCS may have a slightly broader appeal, at least to those who need
to run legacy applications, but neither emulator will replace the need for good
native Linux implementations of solid application suites.

I would have liked a chapter on Perl. Like the command-line shells, Perl is a tool
many users—especially those administering their own systems—will find
useful. Indeed, whether one writes system administration programs, backup
tools or CGI scripts, Perl seems to be the language of choice for a large number
of experienced Linux users.

So, how did A Practical Guide to Linux do against the four challenges I
mentioned earlier? It is definitely comprehensive (but that's the easy part). It's
also relevant—most of the tools and utilities covered within its pages are here
to stay. Aside from the material on the Internet (which admittedly is moving at
a lightning pace), it is up-to-date. And, except for the chapter on programming,
it is very practical.

The fact is, I'd buy it. It's every bit as good as any of the other Linux books
available and better than many.

Todd Sundsted is a programmer, writer, and die-hard Linux enthusiast. He
writes the “How-To Java” column for JavaWorld (http://www.javaworld.com/)
and provides training and consulting through Etcee (http://www.etcee.com/).
He can be reached via e-mail at tesundst@emss.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/049/toc049.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

HTML: The Definitive Guide, Second Edition

Eric S. Raymond

Issue #49, May 1998

What is really outstanding about this book is the careful attention to HTML
portability issues.

• Authors: Chuck Musciano and Bill Kennedy
• Publisher: O'Reilly and Associates
• E-mail: info@oreilly.com
• URL: http://www.oreilly.com/
• Price: $32.95 US
• ISBN: 1-56592-235-2
• Reviewer: Eric S. Raymond

Given the number of HTML books available, it takes something close to hubris
to title a book HTML: The Definitive Guide. When O'Reilly sent me the
manuscript of the first edition for review over a year ago, I was skeptical—but
that first edition earned its title by presenting the best reference material I have
ever seen on HTML. This second edition is a worthy follow-up.

The authors methodically walk you through every HTML feature in HTML 3.2,
Netscape's extensions and Internet Explorer's extensions. They even cover such

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

recondite topics as cascading style sheets. A handy reference appendix lists all
the world's tags.

What is really outstanding about this book is the careful attention to HTML
portability issues. Browser-specific tags and tag attributes are prominently
marked. Charts like the summary of content-based tags on page 73, which tell
you exactly how the tags will render under Netscape, Internet Explorer and
Lynx, are alone worth the price of the book. And while non-portable
constructions are carefully documented, the book is full of good advice about
making your pages browser-independent.

Not only is this a definitive guide, it may be the only HTML book you'll ever
need—at least, until the authors put out the next edition covering HTML 4.0.

Eric S. Raymond is a semi-regular LJ contributor who thinks Perl is pretty neat
even though he still carries a torch for Scheme. You can find more of his
writings, including his paper for the San Jose Perl conference, at http://
www.ccil.org/~esr/. Eric can be reached at esr@thyrsus.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/049/toc049.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Protecting Your Site with Access Controls

Reuven M. Lerner

Issue #49, May 1998

Portions of your web site can be kept secure using user name, password
combinations.

One of the wonderful things about the Web is that so much information is
freely available. For the cost of a telephone call and a monthly bill from your
Internet service provider, you can read hundreds of newspapers, get updates
on the computer industry and listen to radio stations from your home town.

Even the most open, freely available site usually contains one or more sections
that are not meant for public consumption. The reasons for cordoning off
sections of the site can vary: Perhaps the webmaster wants a place to put his
favorite hacks, a repository for testing new programs or a directory in which
staff notices can be placed. If a site wants to charge for content or restrict
access to members of an organization, the problem becomes even more
obvious.

One popular way to handle these problems is to create a directory that others
are unlikely to guess. But this approach, known as “security through obscurity”,
only works as long as no one leaks the name of the hidden directory. A far
more robust approach will restrict access based on user name,password
combinations.

This month, we will look at ways in which to restrict access to your server with
the Web's standard user name, password authorization scheme. The principles
should apply to any web server, but I will be using the freely available Apache
web server (available at http://www.apache.org/) in my examples.

How Access Restrictions Work

Access restrictions are part of HTTP, the protocol used in most web
transactions. When your browser requests a document from a server using

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

HTTP, it is usually returned immediately, preceded by several headers (i.e.,
name,value pairs) describing its length, the date on which it was last modified
and the type of content it contains.

HTTP's designers recognized that webmasters might want to restrict access to
one or more directories. Since version 1.0, HTTP has included provisions for
restricting access to parts of a web site.

Let's see how this protection works from a computer's view, first by looking at
an unprotected site and then by looking at a protected one. Once we
understand how access protection works, we can incorporate it into our own
work.

Everything starts when a user asks the browser to retrieve a document. No
matter whether the user types the URL into a text field, selects it from a list of
book marks or clicks on a hyperlink in an existing page of HTML, the effect is
the same. The browser takes the URL, dissects it into a protocol, a server and a
document, and takes the appropriate action. In the case of a URL such as:

http://www.ssc.com/lj/

the protocol name is http, the server name is www.ssc.com, and the document
name (really a directory) is /lj/. Most Web servers are configured such that
requesting a directory is the same as requesting the file index.html within that
directory, so the above URL is effectively equivalent to this one:

http://www.ssc.com/lj/index.html

We can simulate the browser's actions by dissecting the URL on our own and by
requesting the document /lj/ from www.ssc.com using HTTP from the Linux
command line. The TELNET program is generally used to log into a remote
machine, most often to open a shell on that machine. By giving telnet an
argument in addition to the machine name, we can specify the port to which we
wish to connect. Since web servers sit on port 80 by default, we can connect to
the web server on www.ssc.com by typing:

telnet www.ssc.com 80

When we establish a connection to that web server, we can enter an HTTP
request. These requests start with a line describing the action we wish to take
(known as a “method”), the name of the document we wish to retrieve and the
version of HTTP we are using. Beginning with HTTP 1.0, this initial line can be
followed by one or more header lines containing information about the user's
browser, document types that the browser is willing to expect, HTTP cookies
that may have been set in the past and other useful bits of information. For our
purposes, it is enough to enter this line:

GET /lj/ HTTP/1.0

and then press enter twice—once to end the line containing the request, and a
second time to indicate that we have finished sending all of the headers and
that we will now wait for a response from the server.

If all goes well, the server will respond by returning a page of HTML. In this
particular case, we will receive HTML-formatted text (as we can tell from the
text/html Content-Type header at the top of the response) with the latest
information about this very magazine. Your browser is responsible for taking
the HTML returned by the server and displaying it for you.

Retrieving a Protected Document

If we try to retrieve a protected document, things get a bit more complicated.
(We will see how to protect documents in just a moment; for now, assume that
it is possible to restrict access to documents on a web server.) My main
workstation, running Red Hat Linux 4.2 and Apache 1.2.4, contains a “private”
directory whose contents are restricted. Let's retrieve the contents of /private/,
just as I requested the contents of /lj/ before.

From the shell prompt, I connect to the web server with the following:

telnet localhost 80

Once I am connected, I request the “private” directory:

GET /private/ HTTP/1.0

Instead of receiving the contents of the /private directory or the index.html file
contained within /private, I get the following response:

HTTP/1.1 401 Authorization Required
Date: Mon, 26 Jan 1998 12:08:17 GMT
Server: Apache/1.2.4
WWW-Authenticate: Basic realm="TestRealmName"
Connection: close
Content-Type: text/html
<HTML><HEAD>
<TITLE>401 Authorization Required</TITLE>
</HEAD><BODY>
<H1>Authorization Required</H1>
This server could not verify that you
are authorized to access the document you
requested. Either you supplied the wrong
credentials (e.g., bad password), or your
browser doesn't understand how to supply
the credentials required.<P>
</BODY></HTML>
Connection closed by foreign host.

In other words, my request was rejected because I had not authenticated
myself. When did it give me a chance to do so?

Herein lies the dirty little secret of user authentication: when you retrieve a
protected document, your browser really has to request the document twice.
The first time that it tries to retrieve the document, a browser receives a
message similar to the one that we received above, marked with the response
code 401 indicating that you need authorization in order to retrieve this
document.

Old or broken browsers stop at that point, presenting the server's error
message to the user. Modern browsers that understand authentication present
the user with a dialog box into which the user can type a user name and
password. The browser then takes the user name and password, puts both into
Base64 format and sends that along in an “Authorization” header after the
initial request.

Modern browsers also save time by keeping track of user names and
passwords that you have already entered. Thus, the first time you encounter a
protected directory, you are prompted for your user name and password. The
second time you retrieve a file from the same directory, you will not be
prompted. Whether the browser waits to receive the 401 -- Authorization

Required error before sending the user name, password pair or it automatically
responds to the message depends on the implementation.

Thus, if my user name is “reuven” and my password is “password”, I can retrieve
the contents of the /private/ directory by using TELNET to access port 80 on my
local computer and entering:

GET /private/ HTTP/1.0
Authorization: Basic cmV1dmVuOnJldXZlbg==

The first line is identical to what we have seen before; it indicates that we want
to use HTTP 1.0 to retrieve the document named /private/ (which happens to
be a directory, although the client does not know that) using the GET method.
Rather than pressing enter twice after the first line, we only press it once and
then add a single additional header. This one begins with “Authorization:”,
meaning that we are about to send authorization information to the system
using the “Basic” algorithm, which is nothing more than a Base64 encoding of
the user name and password that the user entered in the form
username:password.

If the user name, password combination succeeds, the system returns the
contents of the resource requested by the browser. If the request fails, the
same message (with response code 401) is returned to the user's browser. The
browser can allow the user to try again or can display the error message sent
along with the 401 message.

In this case, the user name, password combination does indeed work, giving
me the contents of /private/, which is the file /private/index.html, returned in
the following manner:

HTTP/1.1 200 OK
Date: Mon, 26 Jan 1998 12:41:14 GMT
Server: Apache/1.2.4"
Last-Modified: Mon, 26 Jan 1998 10:49:49 GMT
ETag: "1057-ca-34cc6a4d"
Content-Length: 202
Accept-Ranges: bytes
Connection: close
Content-Type: text/html
<HTML>
<Head>
<Title>My private site</Title>
</Head>
<Body>
<H1>My private site</H1>
<P>This is my private site.
From here, you can get to
my test page.</P>
</Body>
</HTML>

The 200 status code at the top of the response indicates that everything has
gone well and that the server was able to retrieve the document that we
requested. As you can see from the Content-Type header (or simply by looking
at the document's contents), the requested document contains HTML-
formatted text. Were we to view this through our browser, we would
undoubtedly see the text in different sizes.

Is This Real Security?

If you are wondering how I managed to get the Base64 equivalent of my user
name, password combination, it was with the help of the following one-line Perl
program:

perl -e 'use MIME::Base64;\
 print encode_base64("reuven:password");'

Entering the above in the shell results in:

cmV1dmVuOnBhc3N3b3Jk

which must have been the Base64 equivalent of reuven:password, because it
allowed us access to the resource.

MIME::Base64 is a Perl module that you can get from CPAN (http://
www.perl.com/CPAN/) for handling MIME-standard mail. I cannot remember
the last time that I had to write a program to handle e-mail encoded with MIME,
but the Base64 module comes in handy for non-mail applications such as this
one.

If you have any experience with securing computer networks, you might be
surprised to learn that user names and passwords are passed between web
browsers and servers unencrypted. Indeed, while the text isn't passed
completely in the clear, it would require another one-line Perl program to turn
the Base64-encoded user name, password string back into its ASCII original.

Suffice it to say that this is not a very secure scheme. Someone monitoring
packets sent over the network would have to work a bit harder in order to
capture your user name and password, but not significantly harder than if the
text were sent without any transformation.

At the very least, make sure to use user names and passwords that have
nothing to do with /etc/passwd, the file that typically stores user information on
Linux systems. Your secret documents can still be available via the Web, but
your machine will not be open to break-ins which are a much more serious
threat. (Someone who breaks into your computer can do much more than just
read your documents.)

An authentication scheme known as “Digest” will soon be available. It is already
available in Apache and is waiting for a browser to implement it. The digest
method applies a function to a number of parameters, including the user name
and password that are going to be sent, and a number generated by the server
that is sent as part of the headers in the 401 -- Authorization required

response. The result of the digest function is then sent over the network, rather
than the user name and password themselves. This is not a foolproof system,
but it is far better than the current situation in which your passwords are easily
available.

Creating a Password File

Now that we have discussed the theory behind all of this, we will take a look at
what is necessary to protect directories on your server.

The first thing you need is a file in which user names and passwords can be
stored. Apache comes with a program, htpasswd which can be used to create
and modify such files. The syntax is fairly simple:

htpasswd [-c] passwordfile username

To create a new password file (or overwrite an existing one), use the following
syntax:

htpasswd -c /etc/httpd/conf/passwords reuven

If you enter the above line at the Linux shell (with htpasswd in your $PATH

environment variable), you will be prompted for a password. After you have

entered the password twice, the user name, password pair will be stored in the
file you specified.

The -c option creates a new file or overwrites an existing one. (This option is
unnecessary to create a user; you can do that without the -c option, as
described below.) Be especially careful with the -c option, because it overwrites
old versions of the password file without warning or making backups.

To add a user to an existing password file or to change the password of an
existing user, invoke htpasswd without the -c option:

htpasswd /etc/httpd/conf/passwords reuven

Regardless of whether you are adding a new user or changing an existing user's
password, you will be asked to enter the user's password twice. When you have
done that, the named file will be updated.

The password file contains nothing more than names and encrypted passwords
in the format:

username1:password1
username2:password2
username3:password3

For example, the password file that I created for this column contains the
following entries:

reuven:zZDDIZ0NOlPzw
reena:SjCCCbsjjz2Z2
foobar:RpubVfdhWwv1U

If you expect to handle many authorized user requests on your system and if
the number of users on your server is high, you might want to consider using
authorization using a more efficient system, such as DBM or DB. Support for
DB and DBM are available for modern versions of Apache (although the
appropriate module must be compiled in), as is support for a number of
relational databases, including Msql and MySQL. More information on these
options is available on the Apache web site.

Protecting Directories

Now that we have a list of user names and passwords in the correct format, we
can use that list to protect the directories on our server. Each directory can use
a different file containing user names and passwords—so your “top-secret”
directory can have a different list of users than your “secret” directory.

There are two ways to protect files on your system. One is to put a file, called
.htaccess by default, in the directory you wish to protect. This gives you the

flexibility to modify individual directories quickly and easily and to give
responsibility for different directories to the people in charge of those
directories—but it also removes a certain element of central control.

We will thus look at the method in which access restrictions are defined in
srm.conf, one of the Apache configuration files. Placing the access restrictions
in srm.conf means you will have centralized control of access to your server,
and you will have to restart the server each time you make changes.

Protected directories are declared in srm.conf within <Directory> and </

Directory> statements with a relatively straightforward syntax. For instance, I
added the following lines in this file to protect directories used in this article:

<Directory /home/httpd/html/private>
 AuthType Basic
 AuthName TestRealmName
 AuthUserFile /tmp/authusers
 require valid-user
 </Directory>

The first and last lines confine these declarations to /home/httpd/html/private,
the protected directory on my server. Someone requesting a file within /home/
httpd/html (the root directory on my web server) can do so without having to
enter a user name or password. Someone trying to retrieve a file in /home/
httpd/html/private (known as /private to the outside world), or in any
subdirectory of /private, will have to enter a user name and password.

The user name, password pair is be passed using the “basic” authentication
scheme that we saw earlier, in which user name, password is encoded using
Base64 and sent as part of the HTTP headers following the request. Until
browsers begin to support the “digest” method (or even more secure methods),
all protected directories should declare the AuthType to be “Basic”.

AuthName is a way of identifying this directory to the outside world. You might
want to call the directory something meaningful, such as “Joe's private
directory”, or “FYI”. You might use AuthName to distinguish between different
protected sections of your web server, such as “private area” and “staff area”.
AuthName is generally displayed in the dialog box into which a user can enter
her user name and password.

Next, we indicate which password file should be used for this directory. As
mentioned earlier, each directory can use a separate password file, so it is
important to specify which one you wish to use. If you expect to use more than
a few password files on your system, you might want to investigate the use of
groups, which allow you to grant privileges to different subsets of users in a
single password file. (Users can be placed in groups, which we will not address

here, but which allow you to associate each user in the password file with one
or more groups).

Finally, we indicate that we will allow only valid users, meaning only those
whose user names and passwords are in the password file named in
AuthUserFile. You could also specify individual users who would be allowed into
the site, such as:

require user reuven reena

Once you have placed this information in your server's srm.conf file, you need
to tell the server to reread its configuration file. You can do this by shutting the
server down and then restarting it or by sending it a HUP signal, as follows:

killall -v -1 httpd

This command sends a HUP signal (aka signal #1) to all instances of httpd

currently running. Remember that Apache normally runs a number of servers
simultaneously, so trying to identify individual processes and use the standard
kill command is probably not a good way to go about it.

Once you have restarted the server, protected directories are only accessible to
someone whose user name and password appears in one of these directories.
If you want to test the protection mechanism, using TELNET (as described
above) to pretend to be a web browser might be the best way to do it, in order
to avoid a browser's cache of passwords.

Using This Information in CGI Programs

Just as you can protect directories containing HTML files and pictures, you can
also protect directories containing CGI programs. For instance, if you want to
make a selected number of CGI programs accessible only to a select number of
users, you can define /cgi-bin/private in the same way as you did /private.

Here, for example, is the definition that I added to srm.conf in order to protect /
cgi-bin/private:

<Directory /home/httpd/cgi-bin/private>
AuthType Basic
AuthName TestRealmName
AuthUserFile /tmp/authusers
require valid-user
</Directory>

As you can see, the definition is identical to that for /private, except for the
name of the directory.

In this case, we will be asked for a user name, password combination if we try
to execute a CGI program in this directory, using either GET or POST. (Apache
allows you to set a separate access privilege for each method, so you could
allow all users to GET but a restricted group to POST and still others to PUT and
DELETE.) Before the request will actually be sent to the CGI program in
question, we will have to authenticate ourselves.

One of the nice benefits of protecting CGI directories is that all programs in that
directory immediately have access to a new environment variable,
REMOTE_USER, which contains the name of the user in question. This is
available to CGI programs written in Perl and using CGI.pm via the remote_user

method, but all programs can retrieve the value of the environment variable.

How can this be of use? Well, we know that the user name must be unique; no
two users can share a user name. Thus, we can use the user name as a primary
key (i.e., a unique index) into a table in a relational database containing more
information about the user—his or her age, interests and last visit.

Indeed, over the last few months, this column has looked at a variety of
techniques for keeping track of information about users, most often by setting
an HTTP cookie on the user's computer and setting a primary key value in the
cookie.

The advantage of this system is that the user must verify his or her identity
before being allowed to access the program—meaning that by the time the CGI
program is executed, we can be sure that the user name exists, is associated
with a real user and that this user represents that person (or has access to the
user's password). HTTP cookies operate on a per-computer basis; if someone
were to use my computer while I am not looking, they could retrieve
information from all of the private sites from which I have retrieved cookies.

Another advantage of using this form of identification rather than cookies is
that it gives the user mobility. No longer is the user tied to a particular
computer or browser. While users must sign in before being allowed to use the
site, they can access the site from anywhere rather than just from their
computer at work or home.

There are disadvantages, too—the main one is the inherent insecurity
associated with the basic authentication scheme. And some users prefer not to
be bothered with having to enter their user name and password each time they
visit a site. Such users would rather the site recognize and remember their
settings automatically.

Listing 1 is a short CGI program written in Perl that identifies the user name
entered. If this program is placed in an unprotected directory, it will indicate
that no value for REMOTE_USER is available. If run from within a protected
directory, however, it will return the user name that was used to access that
directory.

If you were to create a table in a relational database (such as MySQL), you could
define the primary key to be a user name of no more than eight characters. The
value of remote_user could then be used as a reliable index into the database.

Protecting web sites is sure to be an increasingly important topic as the Web
continues to mature. Apache is remarkably flexible when it comes to such
security mechanisms. While I mentioned groups, there was not enough space
to discuss additional options, such as restricting access by domain or IP
address. See the Apache documentation for more information on this issue and
the sidebar for additional sources.

While user name, password combinations are useful for restricting access to a
web site, they can also be used to produce a unique key into a database. If you
are thinking of creating a database to keep track of your users, you might want
to consider using access controls to force users to log in.

Restricting access to directories on your web site is neither complicated nor
difficult and lets you put sensitive or private materials on the Web without
having to worry about someone discovering a secret URL.

Resources

Reuven M. Lerner is an Internet and Web consultant living in Haifa, Israel, who
has been using the Web since early 1993. In his spare time, he cooks, reads and
volunteers with educational projects in his community. You can reach him at
reuven@netvision.net.il.

Archive Index Issue Table of Contents

 Advanced search

https://secure2.linuxjournal.com/ljarchive/LJ/049/2730l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/049/2730s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/049/toc049.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

 Advanced search

Letters to the Editor

Various

Issue #49, May 1998

Readers sound off.

Japanese Word Processor

I have been a subscriber to your fine magazine for several months now, and
each month I look forward to receiving the newest edition in the mail. Each
edition is better than the last, and you folks always seem to cover issues I need
more information about right around the same time the magazine arrives (are
you psychic?). Perhaps the following might be of interest to your readers.

Would you like to work on an exciting project? There is a Windows application,
called JWP—a Japanese Word Processor. This package was written by Stephen
Chung, and as a GNU product it is freely distributable. I've used it extensively
over the past few years, and it is a great package.

This project will never get off the ground without volunteers; therefore, I invite
any interested X-Windows developer who wants to make a contribution both to
the GNU and Japanese-speaking communities, to lend a hand with this exciting
project.

The JWP-Port Project home page contains more information on the JWP
package as well as the JWP-Port project itself. If you are interested, please visit
the page at http://qlink.queensu.ca/~3srf/jwp-port/.

—Steve Frampton 3srf@qlink.queensu.ca

ispell

I just read your LJ article on ispell. [“Take Command”, February 1998] You
obviously like it. I find it a large pain in the ass, and wish I had a normal UNIX
spell-checker available on my Linux box.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

I have two gripes concerning ispell. First, the word list it comes with is not very
complete. I've added 382 words so far and keep adding. One reason for
needing to add so many is that ispell (for reasons I have argued with its creator
about) insists on trimming “'s” from possessives. That means that sooner or
later I find myself having to add the possessive form of every noun in the
language to my word list. And that's my second gripe: why can't they at least
provide the removal of “'s” as an option?

The developer of ispell insists that this bug is a feature. I think his feature is a
bug. What do you think? Doesn't this bug you?

—Andrew T. Young aty@mintaka.sdsu.edu

In general, ispell works well for me, although I do have my own frustrations. I'd
like it to have a “change all” feature, so if the word is consistently misspelled
throughout I only have to tell it to change it once. There are words I think
should be in there that aren't: hydroponic and oxymoron, for example. I've
added 304 words but many have been proper names (people and products),
computer jargon and abbreviations.

The “'s” is a feature in the spell checker I have at home too; at least for words I
am adding to the dictionary. I too find it annoying, but not as much as you
evidently do.

—Editor

Linux

I just read the Letter to the Editor from searoy@aol.com [February 1998] and
thought I needed to share with you our experience with Linux at work. First of
all, you do not have to become a programmer to run Linux and many of its
applications (my two sharpest guys are operators). The Red Hat 5.0 distribution
(it costs a whopping $39 US) is very easy to install on Intel computers and even
runs on Sun SPARCs and DEC Alphas (you need to be familiar with how SPARCs
and Alphas work through the boot process). Red Hat comes with editors,
databases, compilers, scripting languages (Perl, Expect, etc.), network security
tool and several types of servers (web, SAMBA, printer, Novell, etc). Even the
updates are easy to get off of the web and install on the computer.

The second thing we like about Linux is that it is supported by programmers,
hackers, engineers and users around the world, so problems get fixed fast. I
recently read an article in BYTE magazine about the bug in the Pentium
processors, and the only OS to have a fix out was Linux. (The bug is in a piece of
code that will try to stuff a 64 bit word into a 32 bit register.)

The third thing we like is that we learn how the computer, operating system
and applications work, which has a snowballing effect. Each time we've solved
one problem or gotten a program working it has helped on the Solaris and HP-
UX systems we have. Last, you can get into Linux cheaply. Find an old 386/486
with 16MB of memory and at least 300 MB of disk space and you have a
computer system for experimentation. Kevin (one of my operators) built a
firewall for the local college with a 386/33 that they had in the scrap pile, and
we run all of our network monitoring tools on 486/66 ASTs that were headed
for salvage.

—Bernie Morin bm@aol.com

“A Partner's Survival Guide”

Brilliant! Absolutely loved it—“The two are merely coincidental.” This glimpse
into a hacker's life is a big, unattended part of the mainstreaming of Linux. [“A
Partner's Survival Guide”, Telsa Gwynne, February 1998]

—Arnim Littek arnim@digitech.co.nz

September 1997 Issue

The article by Andy Vaught, “Introduction to Named Pipes” [September 1997]
contains an error. Near the bottom of the first column on page 32 is the
following command:

mkfifo pipe; ls -l pipe1; cat < pipe

The above is worthless, as pipe should in fact be pipe1. This error caused me
no trouble, but it was not intended for me, rather for someone who has paid
money for LJ and expects to learn and trusts LJ to be accurate. Now, “No finger
pointing between LJ and Vaught”. I would just like to see the guilty party stand
up and apologize to ALL the readers for the frustration they have caused
someone trying to learn. As a publisher, you have an obligation to ensure that
there are no errors. And, please, no excuses.

—August Gramm asursa@cris.com

You are correct: the commands should have read pipe1 in all three cases. You
are also correct that LJ has an obligation to publish technically correct
information. We are, however, not perfect. We would like to be, and we have at
least four different people look at each article. We are continually surprised
when mistakes like the one you mention get past us. The ultimate responsibility
for mistakes lies with me—my policy has always been “the buck stops here”. I
am sorry for any frustration caused by these typos. Yours was the only letter I

received about this error and the September issue is quite old—perhaps even
the newbies were able to figure out the right way to give the commands.

—Editor

Oracle In-house Linux Port? Bah!

Your piece on databases for Linux (“Databases”, February 1998) mentions a
stealth, “in-house” port of Oracle for Linux, which we've apparently had “some
time.” And Oracle refuses “to sell or support it”.

Where do these rumors get started? I've worked for Oracle for two years, and
have been a Linux-head that whole time. If a version of Oracle written for Linux
existed, I'd have noticed.

Oracle7 for SCO certainly does run on Linux under iBCS, and quite well. Maybe
a misunderstanding of that fact somehow started the rumor.

No one here at Oracle has ever heard of an actual Linux port. If one does exist,
perhaps it's being used to help reverse-engineer those captured UFOs at Area
51. That might explain the super secrecy.

—Steve Abatangle, Oracle Corporation sabat@us.oracle.com

At the 1994 Uniforum Conference, a man wearing an Oracle badge walked up
to the Linux Journal booth and introduced himself as an Oracle developer to
our publisher Phil Hughes. This man told Phil he had a working version of
Oracle on Linux. Unfortunately, Phil has forgotten the man's name, though not
the event.

—Editor

Bleeding Edge Articles?

I am a long-time reader of LJ and have always been very pleased by your
articles. Linux is finally getting some of the respect it so richly deserves, and it is
great to see such a fine publication supporting the cause.

I do have a question, however. I'm an occasional kernel developer and long-
time Linux user and I would like to see more articles (maybe one per issue) on
Bleeding Edge Linux projects and ports. Articles detailing such relevant topics
as MacLinux (Linux for Macintosh/m68k, http://maclinux.wwaves.com/), Linux/
PMac, GGI, and other works in progress would definitely be a boon to your
readers and allow for more people to become involved in these experimental
projects. Now, in the true Linux fashion, I'm not going to suggest you do things

without volunteering myself in the process and I would like to know if you
accept articles from the user world and (if so) to whom can I send them?

—Joe Pranevich knight@wave.lm.com

We have had articles on the Macintosh and Linux in issue 31, issue 37 and issue
45. Reuven Lerner talks about CGI each month in “At the Forge”. I agree it would
be nice to have bleeding edge articles each month, so we print them as we can.
Yes, we do accept articles from the user world. Please send your ideas to
info@linuxjournal.com. Author information can be found on our web site at
http://www.linuxjournal.com/wanted.html.

—Editor

BTS

I think the first “corrupted terminal” answer on page 72 of the February 1998
issue needs some work:

1. cat was NOT “designed to handle ASCII files.” cat conCATenates files to
standard output (hence the name). It concatenates one or more files from
argv, or if argv is empty, simply from stdin until EOF. There is nothing in
cat or its documentation to suggest that it was designed for ASCII files, or
could not handle binary files.

2. cat does not “interpret a lot of the binary file as control sequences.” The
terminal emulation supported by the console code (or an xterm)
interprets any control sequences it is sent via any program that writes to
it. These can come from any program. The terminal emulator is supposed
to do this. It's why things like Pine and Emacs work, for example.

Here's a question for you: how many Linux seats are there, and how many new
seats a month are there? Any idea?

—Ron Minnich rminnich@sarnoff.com

No idea. Vendors don't like to give their sales numbers to their competition,
and those numbers would probably be the most accurate count. There is the
Linux Counter, but not everyone knows about it or takes the time to register so
its count is way low. If you haven't registered, go to http://counter.li.org/ and do
so—now!

—Editor

Red Hat CDE

I recently saw the review of Red Hat CDE by Don Kuenz in the January edition of
LJ, and decided to buy the software. However, on filling in the order, I saw that
the January price for CDE was 25% higher than the price advertised in LJ. I think
it's unfortunate that the information in the published review was out of date
before I even received the magazine. I am also disappointed that Red Hat, while
obviously benefitting from the PR of this review, are not prepared to honour
the advertised price.

—Dr. Steven Bird Steven.Bird@edinburgh.ac.uk

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/049/toc049.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Open Source Debate

Phil Hughes

Issue #49, May 1998

As part of Eric's article, he introduced a new phrase for talking about software
such as Netscape Navigator as well as other software where the source code is
freely available. The phrase is Open Source.

Last month we published an article by Eric Raymond on Netscape's decision to
release the source code for their web browser. A lot has happened since Eric's
article, and that lot is what I wish to talk about this month.

As part of Eric's article, he introduced a new phrase for talking about software
such as Netscape Navigator as well as other software where the source code is
freely available. The phrase is Open Source.

The idea for a new name and the choice of that name has been an ongoing
debate and, at this writing, continues. The confusion is associated with the term
Free Software. Free has many different meanings. In particular, free can refer
to price or to freedom. While freedom is the issue that we are attempting to
address, there has continued to be confusion.

Rather than attempting to define what we mean by free, the introduction of a
new term seemed in order. With the new term comes the opportunity to define
it.

Bruce Perens (of Software in the Public Interest) and I decided that a web site
with a repository of information on Open Source was the best approach. That
web site is at http://www.opensource.org/ and includes the definition of Open
Source and extensive resources to get others on the Open Source bandwagon.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Netscape Update

By the time you read this magazine, the source code for Netscape
Communicator 5.0 Standard Edition should be available. Netscape announced
they would release this code on March 31, 1998.

Netscape released a preliminary version of their license agreement (Netscape
Public License) for public comment. That comment period ran through March
11.

Netscape put the proposed license on the Web along with a FAQ and
annotations. The ongoing saga of this license is available on the Web at http://
www.mozilla.org/. I'm not a lawyer but what I see of the license makes sense. It
isn't a GPL and it isn't a BSD license, but that is because neither makes sense
for Netscape.

One thing in the license I found interesting is they have elected to keep the
name Netscape for branded products and allow the use of Mozilla for derived
works. This makes sense to me. When I was talking to Eric Raymond before he
met with Netscape, I brought up the concern that a bad port or modification of
a Netscape product could reflect poorly on all Netscape products. The decision
to use a different name offers the needed freedom, yet allows the consumer to
differentiate between a Netscape product and a derived product.

Other Players

Netscape is not the only commercial vendor in the Open Source camp; there
are others.

One hardware vendor who got into this camp before it even existed is Cyclades.
Cyclades was the first communications board manufacturer to embrace Linux.
They have always made the source code available for their drivers and their
sales growth in the Linux and BSD markets has supported their decision to
release source code for their drivers.

Another long-term vendor in this community is Cygnus Solutions. They offer
commercial support for open source software and continue to grow and evolve
with the community.

Of course, all the Linux vendors are there by default as well as the Apache web
server and the Perl programming language. Vendors who elect to get involved
with these products become part of the Open source vendor base.

Resources

I have already mentioned the Open Source and Mozilla web sites. As always, we
put late-breaking Linux news up on the Linux Resources web site, http://
www.linuxresources.com/.

1998 Open Systems Products Directory

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/049/2727s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/049/toc049.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

gprof, bprof and Time Profilers

Andy Vaught

Issue #49, May 1998

Mr. Vaught shows programmers a few commands to determine which sections
of their code need optimization.

A friend of mine was explaining to me why he thought his program wasn't
running fast enough. “Have you profiled it?” I asked. “No, but I'm pretty sure I
know where the bottleneck is,” he replied—famous last words. “Well, let's try
the profiler,” I said. Profiling quickly revealed that 98% of the CPU was being
spent in one subroutine of my friend's program and that 86% of the CPU was
being spent in one line, and he was wrong about the location of the bottleneck.

Profilers are invaluable tools that let you know where a program is spending
most of its time. This information is extremely valuable because it tells you
where your time can best be spent in making your program more efficient and
where you are wasting your time. Typical programs are not quite as lopsided as
in the above story. The “80-20” rule says that a program will spend 80% of its
time in about 20% of the code.

If the total running time of a program is n, then we can break up the running
time into pieces:

total-time = a1*n + a2*n + a3*n + ...

where the “a”s represent fractions of the total time that your program spends
in a particular segment. The sum of the “a”s must add to one. The 80-20 rule
says that one of the “a”s will be quite large. For example, suppose a1 is 8/10
and a2 is 2/10. These numbers correspond to a program which spends 80% of
its time doing a1 and 20% for everything else.

total-time = .8*n + .2*n

Now suppose we optimize a2 so that it runs twice as fast as before—a
significant speedup. The time 0.2*n is now 0.1*n. The total running time is now

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

0.8n+0.1n = 0.9n, meaning the whole program executes in 90% of the time that
it originally did. Suppose we instead concentrate on the other piece. If we halve
the running time of the first piece, it becomes 0.4n. 0.4n+0.2n=0.6n, or 60% of
the original running time. As you can see, it is worth our while to concentrate
on the particular portion of the program that dominates the runtime.

In my friend's case, we were able to optimize that single line a bit. The real
optimization came two days later when he told me that he had removed the
whole subroutine in question, simply by changing how he thought about his
data.

The easiest profiler to use under Linux is the gprof profiler. gprof is a standard
part of the GNU development tools. If you have gcc installed, you probably have
gprof too. To use gprof, simply recompile your program with gcc using the -pg

switch. This option causes gcc to insert a bit of extra code into the beginning of
each subroutine in your program. The -pg switch must also be used when you
link your program, since another snippet of code must be present to tie the
pieces together.

After recompiling, run your program. It will execute slightly slower because of
the work needed to profile the code, but it shouldn't be too slow. After the
program finishes, there will be a file named gmon.out in the current directory.
This file contains the profiling information collected during the program's run.
gprof is used to print this in a human readable form.

gprof outputs information in two ways: a flat profile and a call graph. The flat
profile tells you how much time the program spent in all of the subroutines,
and the call graph tells you which subroutines called which subroutines.

The first part of a flat profile is shown in Listing 1. The “self seconds” column
shows how much time was taken up by each subroutine. The number of times
each subroutine was invoked is shown in the “calls” column. The “self ms/call”
columns gives the average time in milliseconds spent in a given subroutine,
while the “total ms/call” includes time spent in subroutines called by that
subroutine as well. For reasons explained in the gprof documentation, this last
column is actually only a guess and should not be relied upon.

In this example, an important thing to note is that the mcount subroutine is the
actual profiling subroutine call inserted by gcc when it compiles code with the -
pg switch. The fact that the program spends nearly 20% of its time here
indicates that a lot of calling and returning is happening, and that one way to
speed up the code would be to eliminate some of the subroutine calls. Which
ones? The subroutines rnd and uni are likely candidates, since they are called
142 million times in 900 seconds.

https://secure2.linuxjournal.com/ljarchive/LJ/049/2622l1.html

The other profiler in common use on Linux is bprof. The major difference
between bprof and gprof is that bprof gives timings on a source line basis while
gprof has only subroutine-level resolution, and also includes information like
invocation counts. To use bprof, link an object file, bprof.o, into your program.
After you've run your program, a file named bmon.out contains the timing
information. Run bprof on this data file, and it makes copies of your source files
with timing numbers prepended to each line.

How the Profilers Work and Why They Sometimes Don't

The profilers under Linux work by examining the program counter at regular
intervals to see where in the code the program is actually working. Although
easy to implement, there is a randomness to this process that results in a
certain amount of noise in the measurements. Over “long” intervals, the
amount of good data overwhelms the noise. This is usually good enough in
practice, when we are only interested in finding the bottlenecks.

Both gprof and bprof use timers that only run while your program is actually
running. One of the ways that the kernel can use a lot of time on your
program's behalf is by reading or writing huge amounts of data. These times do
not accumulate into the profile. A more subtle way in which the kernel can eat a
good deal of time is if your program uses so much memory that the kernel
must swap part of your program in and out of memory. This situation is called
page thrashing because you can usually hear your disk thrashing around.

A simple way of checking the system time is to run your program with this
command:

time <

After your program finishes, three times are printed: user time (the time the
CPU spent running your program), system time (the time the CPU spent in the
kernel serving your program) and elapsed time (real time, sometimes referred
to as “wall clock” time). By comparing these times you can get a rough view of
how much work the kernel is having to do for you.

My favorite profiler is a program called pixie, which is unfortunately not
available for Linux. Pixie works by actually reading the executable, inserting
counting code into “basic blocks” of code that can only be entered at the start
and exited at the end. Support exists in gcc today for counting execution of
these basic blocks (the -a option), but getting actual times for each block is not
yet supported.

Using the Profile

So now you know the location of the bottleneck in your program. There are a
couple of simple techniques for making things go faster. The easiest is of
course to use the -O flag of gcc to optimize the code. Be warned that optimizers
are notorious for generating bad code.

It is often possible to decrease running time in exchange for an increase in
space. Consider the following (FORTRAN) code fragment in Listing 2.

Profiling revealed that the program was spending over a quarter of its time in
this loop, not just because it is slow, but because it was also being called
frequently. Since it is called frequently, the variables cx, cy and cz are
recalculated for each loop iteration. If we precalculate these values into the
tcentr() array, four array references, three floating-point additions and a
multiplication are replaced by a single array reference. A lot of code in a critical
loop is thereby eliminated.

The cherry on this is moving the multiplication by 0.25 (multiplication by 0.25 is
faster than dividing by 4.0) out of the loop altogether; thus, instead of
multiplying each element of the sum by 0.25, we multiply the whole sum by
0.25. Since the loop happened to execute about 100,000 times or so, we've
eliminated 99,999 floating-point multiplies. The new code is shown in Listing 3.

At this point, the program was profiled again, and this subroutine had dropped
to taking 15% of the total time with 10% being taken up by the square root
calculation. Since a different subroutine was now dominating the run time, the
focus of the optimization effort moved away from this subroutine.

There is one more semi-easy thing that can be done for this code. It happens
that the square roots are known to be needed for a very limited range of
values. So, we can replace the square root function with a function that outputs
the same value by looking up precalculated values in a table and returning an
interpolated value for values that occur between table entries. Again, we have
traded space for time.

Another common way of speeding up a program is to replace array references
with pointers. In the example at the start of this article, the line that accounted
for 98% of my friend's program looked like:

int i, array[1000000];
...
 i = 0;
 while(array[i] == 0) i++;

https://secure2.linuxjournal.com/ljarchive/LJ/049/2622l2.html
https://secure2.linuxjournal.com/ljarchive/LJ/049/2622l3.html

This line searches for the next non-zero element of an array. The operation of
referencing the array consists of multiplying i times a scaling factor (which is
implemented as binary left shifts), adding this value to the start of array[] and
fetching from that location. Replacing this code with:

int *p, i, array[1000000];
...
 p = array;
 while(*p == 0) p++;
 i = p - array;

eliminates the scaling and addition and sped things up by about 10%.

Another change we tried in this case was unrolling the loop. The code is
replaced by:

int *p, i, array[1000000];
...
 p = array;
 for(;;) {
 if (*p++ != 0) break;
 if (*p++ != 0) break;
 if (*p++ != 0) break;
 if (*p++ != 0) break;
 }

The idea here is that on certain types of machines, taking a branch is expensive
while rejecting a branch is cheap. In a very tight loop, the overhead of the loop
can end up being a significant part of the total time. The code in the second
example has been rewritten so that most branches are not taken and that
more work is done in the body of the loop for each iteration of the loop.

As it turned out, this “optimization” didn't speed anything up for the machine
we were using. A good compiler compiling with -O will unroll short loops for
you. It is important to profile before and after to see if what you've done has
helped or hurt.

The other main option for optimizing code consists of simply looking for a
better algorithm. For example, suppose we want to search an array for a
particular entry. If the array is very small, we can simply check each element in
turn. When the number of elements becomes large, hash tables are a quick and
easy way to prune the number of elements that must be searched. For data
that cannot be hashed, tree seaches provide another alternative. Hashing and
trees are beyond the scope of this article, but should be a part of any
programmer's bag of tricks. Any good book on data structures can show you
how they work.

Machine specific optimizations are generally best left to the compiler.
Compilers are becoming quite good with the simplest sort of optimizations, and
gcc is one of the best. Once the profiler has located the slow portion of the

program, the best way to optimize it is to simply imagine having to calculate
everything by hand. Hopefully, you will notice improvements that a compiler
will miss.

After all, the perfect compiler will never be written. There is an old joke that
once a computer is built that can write code as well as a person, that computer
will expect to be paid for its work. Hey, it's job security.

Andy Vaught is currently a Ph.D. candidate in computational physics at Arizona
State University and has been running Linux since 1.1. He enjoys flying with the
Civil Air Patrol as well as skiing. He can be reached at andy@maxwell.la.asu.edu.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/049/toc049.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux on Track

Harald Kirsch

Issue #49, May 1998

Linux was used in two projects as a data acquisition system running more or
less autonomously in the German ICE trains. This article describes design issues
and implementation as well as the problems and solutions used in those
projects.

The Fraunhofer Gesellschaft is a non-profit research organization specializing in
applied research and acting as a proponent of technology transfer between
basic research and industry. With nearly 50 institutes in Germany, almost all
aspects of science are covered. Part of the IITB (Institut für Informations- und
Datenverarbeitung) specializes in applications of computer-based monitoring,
control and diagnosis of industrial processes and equipment by means of
signal and image analysis. As such, our group was involved in two projects
requiring data acquisition and analysis in one of the German high speed trains,
the InterCity Express (ICE). This article describes how the data acquisition was
implemented using Linux.

The Projects: UNRA and ICE-D

Project UNRA (unrunde Räder) tried to discover the reasons wheels of high
speed trains become out-of-round sooner than expected. As railway experts
know, train and coach wheels become out-of-round, i.e., the difference
between the minimum and the maximum radius of a wheel becomes non-
negligible. For ICE wheels, DB-AG uses 0.6 mm as the threshold above which
wheels must be changed. Despite being only 0.1% of the wheel radius, such
differences induce low-frequency vibrations into the coach structure. They not
only put additional stress on structural materials but also cause an unpleasant
ride for passengers.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

ICE High Speed Train

As part of this project, a measuring axle developed and patented by
Forschungs- und Technologiezentrum der DB-AG (Minden, Germany) was
installed in a regular running ICE to measure triaxial forces in the stand-up
point of the wheel. In addition, four accelerometers were installed, three on the
axes at the bearing and one in the coach measuring vertical acceleration. In
addition, a resolver was attached to the axle. It delivers 1440 TTL-edges for one
turn of the wheel. The edges are used to clock 90 A/D conversion for one turn
of the wheel, resulting in a sampling rate dependent on the wheel's rotation
speed but synchronous with its rotation.

With additional channels not mentioned above, a total of 17 channels had to be
measured. Since the radius of an ICE-wheel is 460 mm, 1 km amounts to:

samples, resulting in:

of data every day.

The second project, called ICE-D, did not have such a great demand on
bandwidth, but it required some data analysis to be computed on-line. Since

the system is quite similar to the one used in the UNRA project, this project will
not be described in such detail. Suffice it to say that another Linux computer
will run for two years in a coach car with a new type of bogie (the assembly of
four wheels on which the coach rests) to acquire and analyse 50 data channels.

Hardware

The computer hardware used in both projects is not identical but not very
exciting in either case. In UNRA we use a garden variety Pentium 90 system
with Adaptec 2940 SCSI controller, a sufficiently large Quantum disk, which
seems to have settled its disagreements with the SCSI controller, and an HP
DAT streamer. For the ICE-D project very similar hardware is used.
Comparatively expensive were the 19-inch cases which were necessary to
mount the computer in a rack in the train.

Of more interest might be the measurement hardware. In UNRA there is an
Analog Devices RTI-860, which is a 16-channel, 12-bit A/D (analog/digital)
conversion board. What makes it particularly suited for use with Linux is its on
board memory of 256K samples, relieving us from hard real-time constraints.

Another board, called ADCO, was developed along the specifications of IITB by
CMS. It is basically a device to measure times with a 40 MHz clock driving a 16-
bit counter. On external events, the counter is read into a FIFO of one kilometer
word length and then reset to start again from zero. Consequently the FIFO
collects counter values representing a sequence:

of times between events. The events are generated by the resolver mounted on
the axle and happen once for every four degrees of wheel rotation. Knowing
how much time the wheel needs to rotate four degrees, we can calculate the
rotational speed of the wheel with high precision. The one kilometer sample
FIFO on the ADCO is small compared to the buffer on the RTI-860 and actually
proved to be too small for the first driver developed (see below).

Project ICE-D required another kind of measurement hardware because the
task was not to acquire data at high speed but to measure up to 64 channels.
We decided on an RTI-834 from Analog Devices because it can measure 32
channels and is probably the only board around with a useful programmer's
manual. The manual is not free (approximately 250 DM) but, believe it or not, it
contains almost all details about programming the hardware, including
examples that made it comparatively easy to write a device driver.

In addition to these devices, a GPS (Global Positioning System) device was
mounted on the coach. Position information was recorded with the data to be
able to correlate it later with actual locations on the track.

Software

The software comprises several main components: the data acquisition
program, a watchdog and a taper, a GPS monitor and device drivers. These
components are described in the following subsections.

Data Acquisition

Except for the time between two and four o'clock in the morning, the data
acquisition is active and digitizes data. Because the data acquisition is
synchronous with wheel rotation, the data rate depends on the train's speed.
At 300kph the wheel rotates at about 29Hz resulting in a data rate of

which has to be streamed to disk without loss.

Every 345 rotations of the wheel (about one kilometer), the hardware is reset to
trigger again on the next zero-degree marker of the resolver. At that time the
data acquisition program fetches the most recent information from the GPS,
writes it to file, closes the file and opens a fresh one. Each file covers one
kilometer of track and is nearly one megabyte in size. This approach was
chosen for several reasons:

1. One megabyte and one kilometer are convenient sizes to handle with data
analysis software.

2. Synchronising every kilometer makes sure that losing individual events
from the resolver due to noise will not spoil all data for the rest of the day.

3. One kilometer was determined to be a useful checkpoint to record GPS
information.

4. The files are not created anew each day but are overwritten for efficiency
reasons. In case of a power failure, it is almost impossible to find out how
much of a file is new and how much is from the day before; therefore, a
partly written file has to be thrown away. Throwing away up to one
kilometer of data is a reasonable tradeoff between number of files and
amount of data lost.

Of course, there is nothing magic about one kilometer. Two kilometers or one
half kilometer would probably have worked equally well.

While reading data from the devices, the data acquisition program also
monitors the wheel's rotational speed to check whether the train's speed is
above 60kph. Below that threshold, data is considered to be of no interest and
is thrown away. In particular the file currently being written is reset and reused
as soon as the speed rises above the threshold. Of course, up to one kilometer

worth of data recorded at speeds above 60kph is discarded, but in fact, the
threshold of 60kph is a rough guess anyway so no harm is done by discarding
some data recorded at speeds slightly above 60kph. Typical travelling speeds of
the ICE are, depending on track type, 100kph, 160kph, 250kph and 280kph, and
only those speeds were of major interest in the project.

The data acquisition program is rather simple, most of it doing error handling
in case of read or write errors. Since device drivers were implemented for the
RTI-860 as well as for the ADCO, digitizing is as easy as opening a file and
reading from it. The only thing requiring even minimal thought was that the
data rate from the two drivers is not identical. Reading the same amount of
data from both devices in every course through the main loop would soon fill
up one of the driver's buffers. A general solution in such cases is the use of the
select() system call; however, in the given case, the exact ratio between the two
data rates was known and the amount of data read from each driver in every
read-call was chosen accordingly.

cron Jobs

At two o'clock in the morning the data acquisition process stops recording data
in order not to interfere with other work done at that time. First, a cron job
reboots the system as a preventive measure against memory leaks. Although
none were observed, rebooting costs nothing and does no harm. After the
boot, the acquired data is written to tape with a script started as a cron job
which ultimately calls tar.

A minor nuisance was that it is almost impossible to find out how much space
is used on the tape if internal compression of the DAT drive is enabled.
Assuming that the compression ratio is about the same every day, it would
probably have been possible to put two days' worth or 1.5GB of uncompressed
data onto a 2GB tape. Since the A/D converter only delivers 12 bits which are
stored as 16-bit values, a compression to 1.125GB should be trivial. Another
12% reduction is probably possible because most of the time the digitized
signals do not cover the full 12 bits.

During the rest of the day, i.e., not between two and four o'clock in the
morning, another cron job is started every ten minutes. As a measure against
yet unknown bugs in the data-acquisition program which may cause it to crash,
a watchdog program checks if the data-acquisition process is still in the process
table, and if it is, assumes that it is doing something useful. If it is not in the
table, the system is rebooted. As of this writing the watchdog has still to prove
its utility, since no such incident has been found in the log files.

GPS monitor

The GPS device is a cute little gadget that looks like a computer mouse without
buttons. It is about the same size, shape and color as a mouse and is mounted
on the top of the coach to have a clear view of the sky. It is connected to the
computer via a serial line which also delivers power to the device. As soon as
the GPS is connected, it starts sending several types of information which can
be read with a command as simple as:

cat /dev/ttyS1

as long as /dev/ttyS1 is set to the correct baud rate. By writing to the device, it
can be programmed to deliver only certain types of information.

The high speed data acquisition has one minor deficiency—it only delivers a
dataset once per second. As described above, the positioning information is
entered into every data file one kilometer in size. Now suppose that the data
acquisition process starts reading from the GPS after it has acquired the last
one kilometer sample. Reading may take up to one second while the wheel
turns up to 28 times per second, thereby losing about 80 meters of data.

Since losing data was not considered efficient, the gpsmonitor program was
introduced, running parallel to the data acquisition process. It reads the
position information at the given rate of one second and stores it in a file where
the most recent information is always available for the data acquisition
process.

To make sure that the data acquisition process does not read partially written
data sets, in general it would be necessary to use a file locking scheme to bar
the acquisition process from reading while gpsmonitor is writing its data.
However, one data set is only 80 characters in length and is sent to the file in
one write-operation. Checking the Linux kernel sources might show that this is
not an entirely atomic operation, but experiments with a process rereading the
information at the highest possible frequency have shown that the probability
that a write of 80 characters would be interrupted by another process is
practically zero, i.e., was not observed. Consequently, file locking was
considered to be unnecessary overhead.

Device Drivers

The most interesting part of the project for the Linux hacker is certainly the
device driver section. As usual, no device driver could be obtained from
manufacturers of the boards to be used. It is a pity that no manufacturer of
measurement hardware recognizes the potential of Linux as a measurement
platform. Certainly not a real-time system, but with today's fast processors and

some precautions, Linux is able to stream data to the disk at high rates and
without dropping data.

Writing a device driver seemed to be a daunting task, and it proved to be
exactly that, but for reasons other than the expected ones. Not being
particularly familiar with the internals of Linux, it first seemed that learning the
interface between kernel and driver might be a complicated problem. It proved
to be almost too trivial to mention. With an early version of the kernel hacker's
guide, code of other drivers all around, and the helpful Net community,
communication between kernel and driver was easily established.

The bad part was the hardware, mainly due to a lack of decent documentation.
German distributors were approached to almost no avail, even for analog
devices. Linux was as yet unheard of, and all that could be obtained was source
code for MS-DOS and a user's guide for the RTI-860 containing a full schematic
diagram. For the ADCO, the situation was just about the same. Nevertheless
drivers were written, and the work is almost perfect today. Only the RTI-860
driver still contains a nasty bug, probably due to a timing problem: clearing the
on-board memory and enabling the trigger cannot be done in the right order.
Independent of which operation is done first, some samples are sometimes
dropped, presumably only if the trigger line goes active very shortly after the
trigger is enabled.

Another problem is the kernel itself. This problem was observed in 1.x kernels
and seems to persist in 2.0.x kernels. Because the ADCO board has only a one
kilometer sample FIFO and must be emptied before it overflows, at a 50KHz
sampling rate the driver has to read the data out at a rate of 50Hz. Put another
way, the driver has to have a look at the board at least every 20ms. With a time
slice of 10ms in a typical Linux kernel, this must happen every other jiffy. For
those not familiar with kernel code, it should be noted that there is a variable
called a jiffy in the kernel, which is incremented by the timer interrupt. In the
Linux kernel, a jiffy is defined rather exactly to be 10ms. In particular with the
POSIX scheduler available in recent kernels, this should not present a problem.
In contrast to the normal Linux scheduler which constantly changes process
priorities to distribute processor time in a fair way, the POSIX scheduler allows
a fixed priority to be attached to a process. With the right priorities, at least one
process can be guaranteed to get the processor at the next scheduling event
after it makes a request. This should be at the next tick of the clock, which is at
most 10ms away.

In practice it was found that sometimes no scheduling occured for 40, 50 or
even 100ms, which was even more irritating as no other process was active at
that time. It looked very much like the mechanism responsible for paging and/

or swapping was responsible for it, but due to limited resources, the problem
could not be further investigated.

As a workaround, a mechanism in the kernel was exploited which allows small
pieces of code to run between two jiffies. Although no scheduling was
performed for up to 100ms, the timer interrupt was not blocked and ticked
along fine every 10ms. One of its tasks is to run code which is registered on a
certain queue by other parts of the kernel. By registering a function which
reads the ADCO's FIFO into a driver-internal buffer, the problem of missing
scheduling events could be circumvented. In fact, it is not even necessary to use
the POSIX scheduler.

Conclusion, Open Questions and Lessons Learned

Linux proved to be an absolutely stable platform for software development and
autonomous data acquisition. The three finger salute (ctrl-alt-del), well known
on certain widespread desktop program launchers, is never necessary on
Linux.

Using A/D conversion boards with on-board memory precludes all real-time
constraints. Boards with too little memory are not easily supported. The fact
that scheduling is sometimes suppressed for more than 100ms is considered a
bug and first resulted in some hectic and active kernel debugging in
cooperation with Ingo Molnar (Wien). It turned out that there seemed to be
more than one reason for the problems, and they were reported to the kernel
developers by Mr. Molnar. However, since we could not wait for the problem to
be corrected (a simple patch seemed not to be enough), the solution described
above was chosen.

Programming feature-rich A/D conversion boards proved to be more
complicated than expected. Even the driver for the well-documented RTI-834
was not easy because of the many dependencies in time and logic between
subcomponents of the board. It seems as if a general problem with A/D
conversion boards is that designers put too many features on one board
introducing dependencies and side effects only they are able to deal with
correctly. This might be the reason why it is usually not possible to get good
documentation—it simply does not exist, because nobody is able to write it.

A new and very interesting trend in measurement devices was recently initiated
by Intelligent Instrumentation (a Burr Brown company). Their EDAS (Ethernet
Data Acquistion System) is a 16 channel, 12 bit, 100KHz A/D conversion device
which can be hooked to the Ethernet. For UNIX they deliver a library in source
code to talk to the device, i.e., program it and read the data. No new device
driver must be written. The device can either be connected to a local network
or, if continous high speed transfer is necessary, it can be connected to its own

“network”--a direct line between the device and a dedicated Ethernet board in
the computer. However, while this idea is very nice and is similar to those
fashionable WebCams, the EDAS is a bit broken for two reaons: A minor
annoyance is that it does not understand RARP (reverse address resolution
protocol). To set its IP address, it has to be connected to a computer via a serial
line. A more major problem is the device's inability to continuously pump the
100KHz it samples onto the Net. After the first enthusiasm we were very
disappointed when the German distributor told us that the EDAS'
microcontroller can fill the internal 32 kilometer samples of memory at 100KHz,
but that it is too slow to stream the data to the Ethernet at the same speed.

Considering the price of 2500 DM (about $1400 US), it would be cheaper to
combine a single-board PC (1000 DM) with an A/D conversion board (1000 DM)
and, say, some flash RAM as replacement for a disk into a small case. Install a
minimal Linux and a suitable daemon as an interface between IP and the
device driver of the A/D board, and you have an iDAB (Internet Data Acquisition
Box). Depending on the application, you can even install software to preprocess
the data before it is passed to the network.

Harald Kirsch is currently employed at IITB where he managed to convert his
group from DOS-based to Linux-based systems. In his free time he works on his
degree. If he has free time after work and school, Harald likes to swim, cycle
and play volleyball and badminton. He can be reached at kir@iitb.fhg.de.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/049/toc049.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

New Products

Amy Kukuk

Issue #49, May 1998

Visual Prolog 5.0, Samba: Integrating UNIX and Windows, VPN Client and more.

Visual Prolog 5.0

Prolog Development Center has announced the release of their Prolog
development environment, Visual Prolog. The new version contains speed
improvements, a feature to easily find Runtime errors, project sharing and
source control, support for objects and classes, a new linker which can build
programs for all platforms without use of a C compiler, Internet support and
other miscellaneous improvements. Visual Prolog 5.0 is available for $715 US.

Contact: Prolog Development Center, 568 14th Street, Atlanta, GA 30318,Phone:
800-762-2710, Fax: 404-872-5243, E-mail: sales@pdcatlanta.com,URL: http://
www.visual-prolog.com/.

Samba: Integrating UNIX and Windows

Specialized Systems Consultants, Inc. has announced the publication of a new
book—Samba: Integrating UNIX and Windows by John D. Blair. The book is a
combination of technical tutorial, reference guide and how-to manual. It also
contains a CD-ROM which contains versions 1.9.17 and 1.9.18alpha of the

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Samba server, a library of tools and scripts and Samba mailing list archives. The
price of the book is $29.95 US and can be ordered from Computer Literacy at
http://www.clbooks.com/ and is soon to be available in bookstores everywhere.

Contact: Specialized Systems Consultants, Inc., P.O. Box 55549, Seattle, WA
98155-0549, Phone: 206-782-7733, Fax: 206-782-7191,E-mail:
info@linuxjournal.com, URL: http://www.ssc.com/.

VPN Client

Aventail Corporation has announced the Aventail VPN server. Corporations can
communicate privately, exchange confidential information and share mission-
critical applications over the Internet with their suppliers, business partners,
customers and remote and mobile employees. Features of the new product
include easy installation and administration, TCP/IP transport or device drivers,
easy integration into a company's existing network infrastructure, support of
multiple authentication and encryption methods including user name/
password, CHAP, RADIUS, SSL, Digital Certificates, Token Cards, S/Key, DES,
Triple DES, MD4, MD5, SHA-1, RC4 and Diffie-Hellman. The Aventail VPN client
for UNIX pricing starts at $7,995 US.

Contact: Aventail Corporation, Phone: 800-762-5785, Fax: 206-215-1120, E-mail:
info@aventail.com, URL: http://www.aventail.com/.

eVote 2.2

eVote is a freely available add-on to e-mail list-servers that gives the members
of the list the ability to poll each other. After installation of the software, the
administrator is not involved. All participants have the power to open polls,

vote, change their votes and view each other's votes, if the particular poll was
so configured. The underlying specialized data-server, The Clerk, is also freely
available for Linux systems only. eVote 2.2 is available in both English and
French.

Contact: Marilyn Davis, Phone: 415-493-3631, E-mail: mdavis@deliberate.com,
URL: http://www.Deliberate.com/.

Third Beta “Huesten” of KDE

The KDE Core Team has announced the availability of the third public beta
“Huesten” of the K Desktop Environment. KDE is a graphical desktop
environment for Unix workstations. The KDE desktop aims to combine ease of
use, functionality and graphical design. KDE is a new desktop, incorporating a
large suite of applications for Unix workstations. KDE includes a window
manager, file manager, panel, control center and many other components.
Highlights of the new release include support of 18 languages, new
applications, kappfinder and improved proxy support. You can download the
KDE base packages from ftp://ftp.kde.org/pub/kde/ or one of its many mirrors.

Contact: The KDE Core Team, E-mail: rwilliams@kde.org.

TowerJ 2.0

Tower Technology Corporation has announced the release of TowerJ 2.0 for
Linux. TowerJ 2.0 is a high performance compiler and execution environment
that takes Java Bytecode as input and creates Linux executables. TowerJ 2.0 is
used to improve the performance of server-side applications that have been
compiled into 100% Pure Java bytecode and tested using a standard JDK and/or
JIT.

Contact: Tower Technology Corporation, 1501 W. Koenig Lane, Austin, TX
78756, Phone: 800-285-5124, Fax: 512-452-1721, E-mail: tower@twr.com,URL:
http://www.towerj.com/.

NetVue/JAVA

AccuSoft Corporation has released NetVue/JAVA. NetVue/JAVA is a Java
document viewer applet for the Internet/Intranet. NetVue/JAVA provides full
platform independence and features full support for displaying annotations, a
small footprint with minimized memory usage and scale-to-gray display
enhancement for quality and readability. The new release also includes a page
thumbnail browser, zooming and scrolling options and TIFF, JPEG and GIF
support.

Contact: AccuSoft Corporation, 2 Westborough Business Park, Suite 3013,
Westborough, MA 01581, Phone: 508-898-2770, E-mail: sales@accusoft.com,
URL: http://www.accusoft.com/.

WipeOut 1.2

Softwarebuero m&b has announced the release of WipeOut 1.2. WipeOut is an
integrated software development environment for C++ and Java projects. It
contains a project/revision browser, text editor, class browser, make tool,
symbol retriever and a debugger front end. The Standard edition is freely
available. The price for the Pro edition, which includes revision management
and teamwork features, starts at $45 for a single user.

Contact: Softwarebuero m&b, Weststr. 9, 04425 Taucha, Germany, E-mail:
info@softwarebuero.de, URL: http://www.softwarebuero.de/.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/049/toc049.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

RAID0 Implementation Under Linux

Jay Munsterman

Issue #49, May 1998

A practical guide to setting up and using a RAID0 device with the multiple device
(md) driver.

Most of us who use Linux at home don't have the same requirements as
businesses that consider Linux a cost-effective, open alternative to expensive
and proprietary Unices. Usually RAID devices aren't a requirement of the home
user, although many users running a striped swap partition report a big
improvement in speed. The multiple device (md) driver, written by Marc
Zyngier, brings RAID to Linux.

md is a driver (included in the standard kernel distribution since 1.3.69) that
allows you to group a number of disk partitions together so that they act as a
single block device. md differs from the other drivers because it doesn't truly
access the physical devices that compose it. md redirects requests from the
upper layer to the devices involved and is interface independent, allowing IDE,
SCSI and XT disks to be grouped as a single device.

There are three modes that md can use with its devices: linear, RAID0 and
RAID1. In linear mode, the physical devices are appended to each other. When
the first device reaches capacity, data is sent to the next device in the group.
This mode allows for the creation of a device with a greater capacity but offers
no real improvement in performance. RAID0 (or striped) devices spread the
data evenly across all the devices in the group. Each write is broken into
“chunks”, and the chunks are placed sequentially across the physical devices.
RAID0 offers performance improvements, especially with concurrent disk
access. RAID1 adds mirroring to RAID0. I feel that RAID0 is the most important
of these modes; therefore, it is the focus for the remainder of this article.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Preparation

When planning your RAID0 implementation, there are two considerations to
keep in mind: physical device layout and device size. If you use partitions on the
same physical device, you will not see any real benefit. The best
recommendation I can make is to use several SCSI disks with each partition
having the same number of blocks. This seems to offer the best performance.
md can deal with different size devices as long as there is a significant
difference. Using a 1,000,000 block device and a 1,000,001 block device can
lead to problems. If you were to create an md device with a 500MB, a 1000MB
and a 1500MB partition, it would run fine; md would split the device into “stripe
zones” of 500MB. Once 1500MB was written to the device, the first physical
device would be full. The second stripe would then be used on the second and
third device. After another 1000MB is written, all data would be placed on the
last device. Performance decreases in this arrangement as disk usage
increases.

Once you have set up the partitions to be used, the kernel will have to be
recompiled with md support enabled. Run make config (menuconfig or xconfig)
and select “Multiple Device Support” and either “Linear” or “RAID0” mode.
Compile as usual. While rebooting with the new kernel, you should receive a
message like this:

md driver 0.35 MAX_MD_DEV=4, MAX_REAL=8
raid0 personality registered

If it went by too fast and you think you may have missed it, use the following
command:

dmesg | more

to receive a replay of the messages logged at boot time. The messages show
that md version 0.35 is installed with support for up to four devices, each being
made up of up to eight physical devices with RAID0 support. If you think you
either will need more than md0 to md3 or will be using more than eight
physical devices in an md, the md.h file must be edited prior to compilation; it
is usually located in /usr/src/linux/include/linux. Change the value defined for
MAX_REAL or MAX_MD_DEV to fit your requirements.

You now have md support in your kernel, or as a loadable module if you went
that way. Next you need to obtain the tools to manage your md devices.
Although md is supported in the kernel, it appears that most distributions don't
include the tools. They are available from ftp://sweet-smoke.ufr-info-p7.ibp.fr/
public/Linux or from the mirror in the U.S. at ftp://linux.nrao.edu/pub/linux/
packages/MD-driver. Red Hat software has an RPM distribution available at
ftp://ftp.redhat.com/pub/contrib/RPMS. The file md-035-3.i386.rpm contains

the needed binaries. Once you have downloaded and unpacked the source,
become root and run make install. The compilation is straightforward, and I've
never had a problem with it. If your Linux source code tree is not located in /
usr/src/linux, you will need to edit the Makefile; otherwise, it should compile
out of the box.

Creating an MD Device

Now you're ready to actually create a RAID0 device. The compilation created
several tools for the task: mdadd, mdrun and mdstop. mdadd is used to add
block devices to an md device. If you want to use sda1, sdb1 and sdc1, you
issue the command:

/sbin/mdadd /dev/md0 /dev/sda1 /dev/sdb1 \
 /dev/sdc1

This command adds sda1, sdb1 and sdc1 to md0. This same result can also be
accomplished by giving these commands:

/sbin/mdadd /dev/md0 /dev/sda1
/sbin/mdadd /dev/md0 /dev/sdb1
/sbin/mdadd /dev/md0 /dev/sdc1

Remember that the order in which the devices are added is significant. If you
change the order, any data previously written will be lost. I recommend adding
the devices in what seems like a logical order and then sticking to it.

Now we must start the device. mdrun has the following command syntax:

/sbin/mdrun -p

where x indicates the mode: -l for linear, 0 for RAID0 and 1 for RAID1. To start
the device we just made, the command would be:

/sbin/mdrun -p0 /dev/md0

When using RAID devices, another option you can use is -cnk to specify chunk
size, where n is the chunk size in KB (n must be a power of two). For example, -
c6k indicates a 6KB chunk size. The default value is the value of your
PAGE_SIZE. The best value for chunk size would be the average request size, so
chances are two requests will write to different physical disks. If you plan to use
the md for swap space, stick with the default.

Once the device is running, you can create a file system and mount it. For
example:

/sbin/mkfs.ext2 /dev/md0
mount /dev/md0 /var/spool/news

This will create an ext2 file system and then mount it as the news spool. Your
RAID0 device is now ready for data. To check its status, type:

cat /proc/mdstat

and receive the following output:
Personalities : [2 raid0]
read_ahead 120 sectors
md0 : active raid0 sda1 sdb1 sdc1 168588 blocks 4k chunks
md1 : inactive
md2 : inactive
md3 : inactive

This report tells you which modes are supported, the current read_ahead value,
the state of each md device, its mode, physical parts, total size and chunk size.

Managing Your MD Device

At this point we have our RAID device running and mounted; as soon as the
machine is rebooted, we will have to rerun mdadd, mdrun and mount. All of
this can easily be added to your rc.local file, but there is a better way. mdcreate

automatically creates an /etc/mdtab file. The mdtab file serves a function
similar to the /etc/fstab file, informing the system of the component devices,
modes and mount points. The syntax is:

mdcreate [-cxk] mode md_dev dev0 dev1 ...

To create an mdtab file for our example device we would use:

/sbin/mdcreate raid0 /dev/md0 /dev/sda1\
 /dev/sdb1 /dev/sdc1
cat /etc/mdtab
mdtab entry for /dev/md0:
/dev/md0 raid0,4k,0,fe8a9ffb /dev/sda1 /dev/sdb1 /dev/sdc1

With this file in place, we can reduce the mdadd command to mdadd -a or
mdadd -ar to automatically add the devices and run them. This also ensures
that the devices will always be added in the correct order.

If there is ever a need to stop the device, first unmount it and then use mdstop.
mdstop will free the physical devices and flush the buffers. For our example
device, we would first stop the news server if it was running with the command:

/sbin/mdstop /dev/md0

Then, we could unmount it using:

umount /var/spool/news

md0 is now inactive, and the physical partitions can be used elsewhere.
Remember, if the device is stopped, none of the data that was written to the
md device is accessible.

With md, the implementation and management of RAID devices is made easy.
As development continues, we will see RAID1 and the tools necessary for mirror
management and recovery. To stay current on the development process, join
the Linux-raid mailing list. To subscribe send an email to
Majordomo@vger.rutgers.edu with a one line body that says:

subscribe linux-raid <

Be sure to look at the documentation that comes with the md package. It's
tools like this one that are helping Linux find a place in the business world.

MD at Work

Jay Munsterman has just relocated to Atlanta, GA from Washington DC, where
he works with a variety of Unix platforms, Linux being his favorite. In his spare
time he likes to spend time with his soon-to-be wife, Denessa, and their dog
Melman. Jay can be reached at jmunster@mindspring.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/049/2359s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/049/toc049.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

KDE and Gnome

Larry Ayers

Issue #49, May 1998

A quick look at two projects designed to make the administration and usage of
a Linux system easier for beginners.

Watching the Linux operating system mature is interesting these days. A couple
of years ago a lot of attention was devoted to incompatibilities with various
hardware components, networking and the development of the kernel. Though
these activities continue, it's no longer necessary to follow these development
efforts as closely in order to run a dependable Linux system. Distributions have
improved immensely, and now more free-software developers are turning their
attention towards refinement and integration of the user interface.

Two separate projects have arisen in the past year: KDE (the K Desktop
Environment) and GNOME (the Gnu Network Object Model Environment). Both
of these projects include among their stated goals the desire to make the
administration and usage of a Linux system easier for beginners, in part by
providing a uniform look and feel for the most commonly used applications
and utilities, as well as interoperability of the system components. It's difficult
to make much of a comparison between the two, as KDE is much farther along
than GNOME, but I'll make an attempt.

Commonalities

There is one common structural aspect to these two projects. They each rely on
a group of shared libraries that provides the interface to basic OS operations,
such as file-reading and saving, as well as basic display and appearance
functions. An installation will populate a directory with a variety of shared
libraries which support a directory of fairly small executables. The Gimp works
this way as well; the individual plug-ins tend to be small, but rely on the services
provided by both the GTK and the GIMP shared libraries. This approach
facilitates contributions by programmers not directly involved with a project, as

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

many of the low-level and window-display functions are already written,
allowing a contributed application or extension to “hook” into them.

KDE

The first of the two projects to gain momentum was KDE. About a year ago a
group of developers, mainly European, began coding the components of this
ambitious project. They chose the Qt toolkit (from TrollTech in Norway) as the
GUI framework, a decision which has since led to some controversy. Qt has a
few licensing restrictions which, though not onerous for end-users, can cause
problems for the creators of CD-ROM-based distributions. Advocates of GNU-
style free software tend not to favor Qt, a circumstance which led to the
creation of the GNOME project.

Setting aside the thorny licensing issues, the KDE developers have managed to
pull together quite a remarkable system in the past year, though numerous
bugs still remain evident. The second public beta was released in November of
1997, and I compiled and installed it soon after. (I had briefly tried the initial
beta, but found it too unstable to evaluate.)

This second release still has flaky aspects, but enough of it works to give the
user an idea of what the developers are planning to accomplish. In effect KDE is
a sort of GUI wrapper around an existing Linux system, which attempts to
simplify system-administration tasks and offer interactive compatible utilities
and applications. kfm is at the core of the system, as it is intended to be left
running in the background and serves as the help viewer for all of the KDE
components. kfm is also a file manager (icon-based, with some resemblance to
xfm and moxfm) and serves creditably as a web browser.

kfm is an impressive application, and itself a good reason for trying out KDE.
Many of the other applications are replacements for programs which most
Linux users probably already have and would only be desirable if a complete
KDE system were the goal.

KDE has its own window manager, kwm, which had some display faults on my
system. Due to these video artifacts I didn't use it much, but it did appear
stylish and well-designed. It seems that these display bugs don't show up on
most systems; I suspect that it depends upon the video-card and X server being
used.

A new Linux user (especially someone accustomed to Windows or Macintosh
systems) might appreciate the relative ease of configuration and use which KDE
offers. In a sense, KDE extends the scope of the tasks traditional distributions
perform. One drawback might be the very comfort of the KDE environment; the
various system-administration tasks outside of KDE's abilities might seem too

daunting or unapproachable without a KDE interface. This won't be seen as a
drawback to prospective users who lack the fascination with internals and
configuration which in the past has typified Linux users.

Some KDE users have reported that they find the system both usable and
useful, but with my particular setup this wasn't the case. I have to say that my
extensively customized Linux installation seems perfectly satisfactory as is, and
I probably lack the motivation to spend the time learning to adapt KDE to my
needs. If KDE had existed back when I first booted up a Slackware system some
years ago, maybe I would have felt differently.

GNOME

Miguel de Icaza, head of the Midnight Commander development group, also
seems to be at the helm of the new GNOME development project, which has
goals similar to those of KDE, with one difference: the project is composed
completely of GNU-style free software. This project is based upon the GTK
toolkit, the free successor to Motif in the GIMP development efforts. The project
arose as a direct response to the KDE efforts, and the GNOME developers have
borrowed some code from KDE for a few of the applets.

As of mid-January (version 0.12) GNOME as a whole isn't really suitable for
actual use, but several of the applets function well and the future looks bright
for the project. Miguel de Icaza is in the process of porting the Midnight
Commander file-manager to GTK, which will allow it to fit in with the remainder
of the GNOME applications.

The Panel applet, written primarily by Federico Meña Quintero, is an icon-bar
and program-launcher which is located at the bottom edge of the screen. It
features cascading menus which could be a substitute for the usual window-
manager root menus. Most of the GNOME applets have been included in the
default menu of Panel, allowing this applet to serve as an entry-point to the
GNOME installation. It takes a little fiddling around to get the hang of using
Panel, so don't give up if at first glance it seems like nothing is working.

The provided applets include a desktop manager (which in part serves as an
interface to the Xlockmore screensaver), CroMagnon (an interface to the
crontab utility), an audio mixer, an interface to the elaborate LinuxConf
configuration manager, several nicely-done games (some of which were
adapted from KDE), a calculator and several others.

One major difference between GNOME and KDE is that KDE includes a window
manager, whereas GNOME doesn't. GNOME is designed to cooperate with the
user's current window manager. This may make GNOME more appealing to

seasoned users who have extensively customized their window-manager
resource files.

Conclusion

As I write this, only the source code is available for GNOME 0.12, and it's tricky
to compile. Several GNU utilities, such as gettext, guile and SLIB, must be
correctly installed in order for a compilation to complete successfully. An intel-
Linux binary archive of the 0.9 release is available from ftp://
ftp.nuclecu.unam.mx/GNOME, but I would recommend waiting a while for
either an updated binary release or an easier-to-build source release. Another
drawback is the lack of any man pages or help files. The developers are hard at
work these days (judging by their mailing-list postings), and I think, given time,
that something both interesting and usable will appear.

Though KDE is closer to being “finished” (if such a state even exists in the realm
of software), it still has a way to go. Development is proceeding rapidly, and I
imagine that sometime this year a more polished release will become available.

The fate of a free-software project is interesting because of the inherent
unpredictability. Anyone can start one, but whether it comes to fruition or
withers on the vine is up to the inscrutable software gods. The timing may be
just right (i.e., the software addresses many users' and developers' needs), but
convincing enough programmers with time and inclination to become involved
just can't be forced or foretold. These two projects seem to have attained that
essential momentum, and hopefully we shall see them evolve further.

Larry Ayers (layers@marktwain.net.) lives on a small farm in northern Missouri,
where he raises sheep, shiitake and shell-scripts.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:layers@marktwain.net.
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/049/toc049.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Best of Technical Support

Various

Issue #49, May 1998

Our experts answer your technical questions.

Viruses

I would like to know what can be said about viruses in a Linux system which is
installed on the same hard disk as Win95. For example, what can happen if a
virus infects the MBR sector (where resides LILO) or if I mount an infected MS-
DOS formatted diskette?

—Troha Donato

Leaving out the usual statements about Unix systems being immune to
standard virus attacks, this is an important point most people should consider,
since many people who run Linux on personal computers (as opposed to
servers) also run Win95 or some other operating system. You should be safe
from a mounted floppy, but be warned that you can get some very odd effects
reading such a disk, such as strange directory entries.

There are several scenarios, from boot sector infection to random pot shots
some viruses are known to take. Unlike the DOS file systems, which
concentrate their layout information into one or two dense tables, Linux
spreads these across the disk. Random potshots are much more likely to wipe
out vital structures on a Linux disk than they are on a DOS disk (assuming the
virus ran from a booted DOS system).

Safety first, as always. When in Unix, don't use the root user account unless you
need to. Create a normal user account in which to do your work. When in DOS,
scan—scan—scan.

—Chad Robinson, BRT Technologies Senior System Analyst chadr@brt.com

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Chances are that if your system becomes infected with a boot sector virus, LILO
will no longer work. The best defense against this situation is to keep an
emergency boot floppy handy. I generally create them using the command dd

if=/vmlinuz of=/dev/fd0. You will want to write-protect it of course. After
booting from floppy, simply re-run LILO. Assuming you have LILO configured to
use the system MBR, it will overwrite the virus.

The Linux operating system itself is not very vulnerable to MS-DOS-style
viruses. All of the common ones depend on being in a DOS/Windows
environment. They do not know how to cope with Linux and do not function.

—Keith Stevenson k.stevenson@louisville.edu

Memory Allocation

I have been working with the Linux system for almost two years. My problem is
memory allocation. The kernel (2.xx) does not reclaim memory after things
such as X sessions are perfomed. I am constantly rebooting the machine
(shutdown -r now) in order to gain sufficient memory for multiple operations. Is
there an executable that can be run which will free all possible memory that
current kernel processes are not using?

If the answer is no, then how can one use Linux as an httpd server that takes a
lot of hits per day? The system would almost always be short of memory to be
able to quickly service, multiple httpd server and other processes. In short, I am
somewhat disappointed in the way Linux handles memory reclamation. Is it
that the X Server and applications are simply “poorly written” and do not free
memory upon exit?

—George R. Boyko

There are no memory leakages in Linux 2.0; there may be some in the 2.1
kernel series, but those versions are only beta-releases aimed specifically at
developers. It's true, on the other hand, that the amount of free memory
reported by a running Linux system is always tiny. This is a feature rather than
a bug; free memory is just wasted, and Linux tries to avoid any waste by
keeping disk buffers and page caches in an otherwise waste-free memory.

It's the kernel which releases any process resources upon exit. You don't want
your students to lock memory by not calling free, do you? As a matter of fact,
many one-shot programs are “poorly written” and rely on the system to close
files and release memory.

—Alessandro Rubini rubini@linux.it

Memory management is one of the things I really like about Linux. I find it to be
much more efficient than a certain popular commercial OS.

I have several Linux systems, all with 64MB of installed RAM. I use xosview to
monitor things like CPU activity and memory utilization. These machines
function as ftp servers, web servers and multi-user workstations. According to
xosview, the memory utilization is consistently above 90% even when the
machine is lightly loaded. This isn't a problem. It simply means that there is a
lot of stuff cached in memory. The real indicator of whether or not you have
enough RAM in your system is swap space utilization. This can be monitored
with xosview or with the command vmstat. If you are swapping to disk often,
you probably need to add more RAM to the system. If not, then things are
probably okay. My 64MB systems almost never swap out to disk, and they have
excellent response time despite the fact that 90% or more of their RAM is
marked as being “in use”.

—Keith Stevenson k.stevenson@louisville.edu

Geometry Mismatch Error

I am having a problem with LILO. It hangs after the letters “LI”. I read the MINI-
HOWTO, and it says that the first boot loader was able to load the second boot
loader but has failed to execute it. Then it goes on to say that the cause is a
“geometry mismatch”. Any suggestions?

—Jim Mendoza Red Hat 4.2

LILO loads its second-stage loader and then the kernel by accessing disk blocks
based on their disk location (CHS: Cylinder, Head, Sector). A “geometry
mismatch” is what happens when LILO's map uses CHS values that are not
those used by the BIOS; this happens with modern BIOSes that play dirty
games with disk geometry to overcome a limitation built in Microsoft programs.
Add a “disk =” section to your /etc/lilo.conf to specify disk geometry as Linux
sees it.

—Alessandro Rubini rubini@linux.it

Undetected Modem

Linux does not detect my modem at com4 (/dev/cua3, address as 0x02e8)
which works fine in Win95. Each time I reboot the system, it automatically
detects only serial port number 1 (/dev/cua0, at 0x03f8) and port number 2 (/
dev/cua1, at 0x02f8). My modem is internal, non-plug-and-play, 33.6Kbps and
manufactured by PC tel.

—Jianzhong Ding Red Hat 4.2

Use setserial to tell the serial driver about the location of your ports. “Plug-and-
play” is an ugly specification, and most of the time it creates problems. To look
for your PnP devices and configure them, run the isapnp package.

—Alessandro Rubini rubini@linux.it

Sendmail Pause

During startup, there is a long pause while sendmail starts. I can only assume
that a request is timing out while trying to contact something on the network
(the network, of course, isn't up yet).

Is there a way to shorten the time-out period for sendmail or otherwise correct
the situation?

—David Moulton Red Hat 4.0

This may be a problem with your machine name in the /etc/hosts file. Recent
versions of sendmail need your name to be a FQDN (including a domain name):

192.168.1.1 foo foo.bar.com

If your name is not fully qualified, sendmail will sleep for about one minute.

—Pierre Ficheux, Lectra Systèmes pierre@rd.lectra.fr

The pause is most likely a name server lookup that is timing out. Have a look in
your maillog (probably /var/log/maillog) and search for lines that look like these
two:

Dec 21 18:33:46 keiko sendmail[4547]:
 gethostbyaddr() failed for 192.168.0.1
Dec 21 18:33:47 keiko sendmail[4553]:
 starting daemon (8.8.5): SMTP+queueing@00:05:00

What's happening is sendmail is trying to resolve the IP address of the machine
it's running on. Name server calls take a relatively long time to timeout, thus
the delay you are experiencing. The quick solution is to add an entry for this IP
address into /etc/hosts or into your name server configuration. sendmail starts
very quickly after you have done this.

—Keith Stevenson k.stevenson@louisville.edu

Archive Index Issue Table of Contents

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/049/toc049.html

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

	Features
	News & Articles
	Reviews
	WWWsmith
	Columns
	The Perl Debugger
	Jeremy Impson
	Examples of Debuggers
	Invoking the Debugger with Unix
	Invoking the Debugger with Windows
	Invoking the Debugger with Emacs
	How the Debugger Works
	The Warning Flag
	Commands (also see the man page)
	Simple Example
	Listing Code
	Stepping Through Lines of Code
	Listing Variables
	More Complex Example
	Subroutines
	Setting Breakpoints
	Adding Actions
	Stack Traces
	Warnings
	Race Conditions
	Process Management, IPC
	Perl Code Must Be Compilable
	Summary

	Building Reusable Java Widgets
	R.J. Celestino
	It Ain't Ugly, It's My GUI
	All the Other Widgets are Doing It
	Foundations of a Reusable Widget
	Superclass
	Events and Delegation
	Drawing
	Widgets to Call Your Own
	Specialization
	Widget Examples
	Example 1. Vertical Separator
	1. Rendering an Etched Line
	1.2. Sizing the Separator
	1.3. Exercises for the Reader
	Example 2. E-mail Entry Widget
	2.1. Layout
	2.2. Create the Event Classes
	2.3. Create a Listener Interface
	2.4. Event Multicasters
	2.5. Hooking it all up
	2.6. Exercises for the Reader
	Example 3. WindowBar
	3.1. Layout
	3.2. Create Event Classes
	3.3. Create a Listener Interface
	3.4. Event Multicaster
	3.4. Hooking it Up
	3.6. Exercises for the Reader
	Example 4. Collapsing Pane
	4.1. Layout
	4.2. Handle Events
	4.3. Exercises for the Reader
	Conclusion

	Building a Distributed Spreadsheet in Modula-3
	John Kominek
	A Distributed Application Framework
	Software Ingredients
	About Modula-3
	Step 1: Basic Construction
	Step 2: User Interface Design
	Step 3: Building the Program
	Step 4: Objects to Network Objects
	Step 5: Distributed Deployment
	Step 6: Cell Range Locking
	Step 7: Porting Procedure
	Conclusion

	Doubly Linked Lists and the Abstract Data Type
	Carl J. Nobile
	What is an Abstract Data Type?
	The Doubly Linked List
	Application Programming Interface
	Initialization
	Status
	Data Modification
	Pointer Manipulation
	Search
	Input/Output
	Miscellaneous
	What Use is It?
	Compiling
	Conclusion

	The Importance of the GUI in Cross Platform Development
	Michael Babcock
	Wrapper vs. Emulated
	The Programming Language Interface
	A Look at What's Out There
	Fresco
	OpenStep/GNUstep
	wxWindows
	Tcl/Tk
	Java
	Qt
	Win32
	Motif
	GTK

	Rapid Prototyping with Tcl/Tk
	Richard Schwaninger
	Tcl/Tk
	An Example

	CDE Plug-and-Play
	George Kraft IV
	Ptype
	Chmod Service
	Register ToolTalk Service
	Handle ToolTalk Requests
	ToolTalk Client
	Desktop Action
	Desktop Service Client
	Plug and Play

	The Python DB-API
	Andrew M. Kuchling
	Relational Databases
	Getting Started
	Cursor Objects
	Transactions

	Toward Greater Portability: A Quixotic View
	Ph.D.. Graydon Ekdahl,

	The Yard Relational Database System
	Fred Butzen
	What Is Yard?
	Implementation
	Resource Management
	Versions
	Documentation
	Installation
	Conclusion

	A Practical Guide to Linux
	Todd Sundsted

	HTML: The Definitive Guide, Second Edition
	Eric S. Raymond

	Protecting Your Site with Access Controls
	Reuven M. Lerner
	How Access Restrictions Work
	Retrieving a Protected Document
	Is This Real Security?
	Creating a Password File
	Protecting Directories
	Using This Information in CGI Programs

	Letters to the Editor
	Various
	Japanese Word Processor
	ispell
	Linux
	“A Partner's Survival Guide”
	September 1997 Issue
	Oracle In-house Linux Port? Bah!
	Bleeding Edge Articles?
	BTS
	Red Hat CDE

	Open Source Debate
	Phil Hughes
	Netscape Update
	Other Players
	Resources

	gprof, bprof and Time Profilers
	Andy Vaught
	How the Profilers Work and Why They Sometimes
Don't
	Using the Profile

	Linux on Track
	Harald Kirsch
	The Projects: UNRA and ICE-D
	Hardware
	Software
	Data Acquisition
	cron Jobs
	GPS monitor
	Device Drivers
	Conclusion, Open Questions and Lessons
Learned

	New Products
	Amy Kukuk
	Samba: Integrating UNIX and Windows
	VPN Client
	Third Beta “Huesten” of KDE
	TowerJ 2.0
	NetVue/JAVA
	WipeOut 1.2

	RAID0 Implementation Under Linux
	Jay Munsterman
	Preparation
	Creating an MD Device
	Managing Your MD Device

	KDE and Gnome
	Larry Ayers
	Commonalities
	KDE
	GNOME
	Conclusion

	Best of Technical Support
	Various
	Viruses
	Memory Allocation
	Geometry Mismatch Error
	Undetected Modem
	Sendmail Pause

